
Resilient and Adaptive Networked Systems

Mauro Andreolini*, Sara Casolari°, Marcello Pietri°, Stefania Tosi°

*Department of Mathematical, Physical and Natural Sciences

°Department of Engineering "Enzo Ferrari"

University of Modena and Reggio Emilia, Modena, Italy

mauro.andreolini@unimore.it, sara.casolari@unimore.it, marcello.pietri@unimore.it,

stefania.tosi@unimore.it

Resilient and Adaptive Networked Systems

Modern system infrastructures must accommodate continuously changing demands for

different types of workloads and time constraints. In a similar context, adaptive

management of virtualized application environments among networked systems is

becoming one of the most important strategies to guarantee resilience and performance of

available computing resources. This chapter analyzes management algorithms that decide

in an adaptive way the transparent reallocation of live sessions of virtual machines in

large numbers of networked hosts. We discuss the main challenges and solutions related

to the adaptive activation of the migration process, the number and location of virtual

machines to migrate.

Keywords: adaptive models, live migration, virtualization

1. Introduction

Most data centers were characterized by high operating costs, inefficiencies, and a

multitude of distributed, heterogeneous servers that added complexity in terms of

resilience and management. In the last years, enterprises consolidated their systems

through virtualization solutions in order to improve data center efficiency and offer the

benefit of performance and fault isolation, flexible migration, resource consolidation,

and easy creation of specialized environments (Ibrahim et al. 2011). Logically pooling

all system resources and centralizing resource management allows the increment of the

overall node utilization while lowering management costs.

In this scenario, live migration of virtual machines is one of the main building blocks to

guarantee resilience and high utilization of networked resources. Live migration is

defined as the transfer of running virtual machine instances from one physical server to

another with little or zero downtime and without interrupting virtualized services (Chen

et al. 2011). There are multiple benefits of live migration among which fault tolerance,

load balancing, and consolidation. For instance, to avoid failover of the virtual

machines, it is necessary to live migrate one or more guest running on one physical

server to another physical server that guarantees continued and uninterrupted service.

Live migration has been supported by the vast majority of hypervisors, such as

VMware, Xen, KVM and VirtualBox (Shetty et al. 2012). Moreover, some recent

versions (e.g., VMware VMotion) support adaptive migration, although supported by

static threshold-based activation mechanisms. This is a step ahead, but we state that full

resilience and high resource utilization require the research for adaptive management

algorithms and supports that are able to continuously tune their behavior as a function

of changing operating conditions. Adaptive capacity management requires continuous

monitoring services and runtime decision algorithms for deciding when a physical host

should migrate a portion of its load, which portion of the load should be moved and

where. These problems and solutions represent the focus of this chapter.

The chapter is organized as follows. Section 2 discusses the virtual machine migration

process. In Section 3 presents a taxonomy of live migration strategies. Section 4

analyzes a case study showing the differences between a static and an adaptive selection

strategy. Conclusions are drawn in Section 5.

2. Migration of virtual machines

A typical networked architecture consists of a huge set of physical machines (hosts),

each of them equipped with some virtualization mechanisms, from hardware

virtualization up to micro-partitioning, operating system virtualization, software

virtualization. These mechanisms allow each machine to host a concurrent execution of

several virtual machines (guest) each with its own operating system and applications.

To accommodate varying demands for different types of processing, the most modern

infrastructures, such as clouds, include adaptive management capabilities and virtual

machine mobility that is, the ability to move transparently virtual machines from one

host to another. In this scenario, the decision algorithm orchestrating the live migrations

has to select one or more sender hosts from which some virtual machines are moved to

other destination hosts, namely receivers. By migrating a guest from an overloaded host

to an unloaded one, it is possible to improve resource utilization and resilience.

The migration algorithms defines three sets: sender hosts, receiver hosts, and migrating

guests, where their cardinalities are denoted as S, R, and G, respectively. Let also N be

the total number of hosts. The algorithm has to guarantee that N ≥ S + R, and that the

intersection between the set of sender hosts and of receiver hosts is null (Andreolini et

al. 2009).

Every virtual machine migration approach shares a common management model made

up of four distinct phases, outlined in Figure 1.

Selection of sender hosts. The first action requires the selection of the set of sender

hosts that require the migration of some of their guests. The idea is to have a migration

algorithm so that the cardinality S of the set of senders is much smaller than the total

number of hosts that is, S << N.

Selection of guests. Once selected the senders, we have to evaluate how many and

which guests it is convenient to migrate. Even for this phase, the goal is to limit the

number of guests for each host that should migrate, so that G < (N - S). If this does not

occur after the first evaluation, the guest selection can proceed iteratively until the

constraint is satisfied. (It is worth to observe that in our experiments, no instance

required an iteration.)

Selection of receiver hosts. Once selected the guests that have to migrate, we have to

define the set of receiver hosts. In these networked infrastructures, the major risk we

want to avoid is a dynamic migration that tends to overload some receiver hosts so that

at the successive checkpoint a receiver may become a sender, and so on. Similar

fluctuations devastate performance and resilience.

Assignment of guests. The guests selected for migration are assigned to the receivers

through a management algorithm aiming to satisfy some architectural and/or application

constraints. For example, a greedy algorithm may begin to assign the most onerous

guests to the lowest loaded hosts, and so on until the sender list is completed. Many

other possibilities exist.

Figure 1: Flow diagram of the virtual machine migration process.

3. A taxonomy of live migration strategies

Existing approaches to live migration of virtual machines can be broadly classified

according to different decisions intervening during the four phases of the migration

process. These decisions, shown in Figure 2, include the activation strategy, monitoring,

component selection, destination and migration mechanism.

Figure 2. Taxonomy of live migration strategies.

Monitoring. The monitoring system used throughout all the operations is one of the

most important component of the live migration mechanism. The first decision regards

the performance indicators (measures) used to evaluate the load conditions of hosts and

virtual machines. Different choices are possible, according to the goal of the migration.

Se n d e r
se le c t io n

G u e st
se le c t io n

R e ce iv e r
se le c t io n

G u e st
re d ire c t io n

A c t i v a t i o n
s t r a t e g y

C o m p o n e n t
s e l e c t i o n

D e s t i n a t i o n

M e c h a n i s m

M e a s u r e s

C o l l e c t i o n

R e p r e s e n t a t i o n
m o d e l s

L i v e m i g r a t i o n
M o n i t o r i n g

s t a t i c a d a p t i v e

s t a t i c a d a p t i v e

W i d e
A r e a

N e t w o r k

L o c a l
A r e a

N e t w o r k

P r e - c o p y P o s t - c o p y

P o w e r
c o n s u m p t i o n

P e r f o r m a n c e
m e t r i c s

S L A
r e q u i r e m e n t s

T r e n d b a s e d

A v e r a g e b a s e d

S a m p l e b a s e d

R a n d o m

P e r i o d i c

 Performance: throughput, utilization of the most relevant hardware resource

components (CPU, disk, memory, network) as in (Stage et al. 2009, Gerofi et al.

2010).

 Power consumption: CPU voltage at the different power states (Jung et al.

2010).

 Reliability: ping response times, service response probes as HTTP response

times (Stage et al. 2009).

The next decision regards the collection of individual samples through the definition of

an appropriate sampling interval. The collection may be periodic (e.g., every second,

every minute), or random. This decision may influence the statistical properties of the

collected measures and therefore the results of the algorithm applied in the virtual

machine migration process, especially at low sampling frequencies.

Once defined a sampling strategy, we define representation models that read the

sampled time series and produce “reduced views” filtered from outliers and reflecting

the behavioral load trend of hardware and software resources. These representation

models may be linear (e.g., moving average, ARMA) or nonlinear (e.g., polynomial,

spline).

Activation strategy. The activation strategy decides when the live migration

mechanism has to start. Current solutions operate in two ways: statically or adaptively.

Static approaches, such as (Khanna et al. 2006, Wood et al. 2007), set some threshold

value and live migration is triggered as soon as the host load overcomes that predefined

value. For example, the scheme proposed by (Khanna et al. 2006) classifies a host as a

sender or as a receiver depending on whether its load is beyond or below some fixed

thresholds. When the load of a host overcomes the threshold, this solution moves all the

selected guests to the physical host having the least available resources sufficient to run

them without violating the SLA. If there is no available host, it activates a new physical

machine. Static approaches cannot work in a networked system consisting of thousands

of hosts where, at a checkpoint, a threshold may signal hundreds of senders and, at the

successive checkpoint, the number of senders can become few dozen or, even worse,

most servers differ from those of the previous set. Also the decision about which guests

is useful to migrate from one server to another is affected by similar problems if we

adopt some threshold-based method. Adaptive approaches where no static thresholds are

used to activate the live migration process are preferable. In the adaptive scenario, the

activation is triggered by adaptive factors, such as significant changes in the host load

conditions. A significant change is any modification in the statistical behavior of the

load that lasts for a considerable number of consecutive measurements (Casolari et al.

2012). Considering different statistical behaviors brings to the detection of different

significant changes, like trend changes or state changes. A significant trend change

happens when the trend patterns of the load vary over time in their direction (e.g.,

upward or downward) or in their distribution (e.g., linear or exponential). For example,

Figure 3(a) shows a host load profile (concerning host CPU utilizations) presenting two

trend changes. An exponential increasing trend (until sample 156) is followed by an

exponential decreasing trend (from sample 157 to sample 336) and then by a horizontal

linear trend (from sample 337 to sample 600). A significant state change is a

considerable variation of the mean load value that occurs either instantaneously or

rapidly with respect to the period of sampling and that lasts for a significant number of

consecutive measurements (Casolari et al. 2012). The load profile in Figure 3(b)

presents two significant state changes, one upwards and one downwards. At sample 200,

the mean load value passes from ≈0.3 to ≈0.6, and then it returns to ≈0.3 at sample 420.

 a) Trend change profile b) State change profile

Figure 3. Load profiles of hosts.

The ability of capturing such changing conditions in host and guest load profiles is

crucial for an activation strategy to reduce the number of migrations to just the most

significant ones.

In the case study described in Section 4, we present the implementation of an approach

that adaptively selects as the senders only the hosts subject to significant state changes

of their load. On the other hand, (Stage et al. 2009) consider the bandwidth consumption

during migration and propose a system that classifies the various loads in order to

consolidate more guests on each host based on typical periodic trends, if they exist.

Similar considerations are also valid for the component selection which is responsible

for choosing hosts and virtual machines that will participate in the live migration

process.

Destination. The destination host can be in the same local subnet or, in the most

modern networked systems such as the clouds, even located in another geographical

network. Common solutions for the selection of receiver hosts are limited to guests that

can migrate only among hosts that are within the same subnet and share common

storage (Kamna & Sugandha 2012). This limit prevents adaptive migration of guests

among federated datacenters that will be more and more important in the next future for

performance and resilience reasons.

Some works (Ramakrishnan et al. 2007, Travostino et al. 2006, Clark et al. 2005)

address the problems of guest migration across WANs and aim to reduce downtime

during migration. For example, the solution proposed in (Clark et al. 2005) is very

efficient because it is able to transfer an entire machine causing a downtime of few

hundreds of milliseconds. (Travostino et al. 2006) migrate virtual machines on a WAN

area with just 1-2 seconds of application downtime through lightpath (DeFanti et al.

2003). (Ramakrishnan et al. 2007) propose cooperative, context-aware migration

mechanisms through existing server virtualization technologies and by proposing

dynamic storage replication technologies to facilitate migration across geographically

interconnected machines.

Migration mechanism. Current live migration mechanisms are mainly based on the

pre-copy or post-copy schemes.

In the pre-copy scheme, the bulk of the guest’s memory state is migrated to a target

node even as the guest continues to execute at a source host (Hines & Gopalan, 2009). If

a transmitted page is dirtied, it is re-sent to the target in the next round. This iterative

copying of dirtied pages continues until either a small, writable working set has been

identified, or a preset number of iterations is reached, whichever comes first. This

represents the end of the memory transfer phase and the beginning of service downtime.

The guest is then suspended and its processor state plus any remaining dirty pages are

sent to a target node. Finally, the guest is restarted and the copy at source is destroyed.

On a high-level, post-copy migration defers the memory transfer phase until after the

guest’s CPU state has already been transferred to the target and resumed there.

Post-copy first transmits all processor state to the target, starts the guest at the target,

and then actively pushes memory pages from source to target. Concurrently, any

memory pages that are faulted on by the guest at target, and not yet pushed, are

demand-paged over the network

4. Case study

In this chapter, we present a case study application of adaptive migration algorithms in

an experimental testbed of 30 physical machines hosting 140 virtual machines. The

adopted virtualization solution is VMware ESXi 4.0. We collect periodic samples of the

CPU utilization through the VMware monitor (VMware) with a frequency of one every

twenty seconds. We show an application of a guest selection algorithm that is able to

adaptively select the most critical guests for each server on the basis of a load

trend-based model instead of traditional approaches based on instantaneous or average

load measures.

The focus is on the first two phases (selection of the sender host, and selection of

guests) that concern open research issues and that represent the core of Section 4.1 and

Section 4.2, respectively. The last two phases (selection of receiver hosts, and

assignment of guests) are hinted at in Section 4.3.

4.1 Selection of sender hosts – CUSUM vs Static models

The identification of the set of sender hosts represents the most critical problem for the

adaptive management of a networked architecture characterized by thousands of

machines where an abuse of guest migrations would devastate performance and

resilience.

We present an adaptive algorithm for sender hosts selection that guarantees high

performance and low overheads since it is able to limit the number of migrations to few

really necessary instances. The algorithm considers the load profile evaluated through

the CUSUM-based stochastic model (Page 1957). The goal is to signal only the hosts

subject to significant state changes of their load, where we define a state change

significant if it is intensive and persistent. This is not an easy task when the application

context consists of large numbers of hosts subject to: many instantaneous spikes,

non-stationary effects, and unpredictable and rapidly changing load. As examples,

Figure 4(a) and Figure 4(b) show two typical profiles of the CPU utilization of two

hosts in a cloud architecture. The former profile is characterized by a stable load with

some spikes but there is no significant state change in terms of the previous definition.

On the other hand, the latter profile is characterized by some spikes and by two

significant state changes around sample 180 and sample 220. A robust detection model

should arise no alarm in the former case, and just two alarms in the latter instance. In a

similar scenario, it is clear that any detection algorithm that takes into consideration an

absolute or average load value as alarm mechanism tends to cause many false alarms.

This is the case of threshold-based algorithms (Khanna et al. 2006, Wood et al. 2007)

that are widely adopted in several management contexts. Just to give an example, let us

set the load threshold to define a sender host to 0.8 of its CPU utilization (done for

example in (VMware)). In Figures 4, the small triangles on the top of the two figures

denote the checkpoints where the threshold-based detection algorithm signals the host

as a sender. There are 10 signals in the former case and 17 in the latter case instead of

the expected 0 and 2. This initial result denotes a clear problem with a critical

consequence on performance: we have an excessive number of guest migrations even

when not strictly necessary.

a) Profile 1 b) Profile 2

Figure 4. CPU load in two hosts.

The proposed algorithm adopts a different approach for selecting sender hosts by

evaluating the entire load profile of a resource and aiming to detect abrupt and

permanent load changes. To this purpose, we consider a stochastic model based on the

CUSUM algorithm (Page 1957) that works well even at runtime. We consider both the

simpler Baseline CUSUM implementation and the more sophisticated Selective

CUSUM implementation presented in (Andreolini et al. 2009). The Baseline CUSUM

model statically uses reference values for its parameters, while the selective CUSUM

algorithm adaptively adjusts its parameters according to data characteristics.

In Figure 5, we report the results obtained by using both Baseline and Selective

CUSUM for sender host selection. If we compare the triangles plotted in Figures 5 with

those in Figures 4 (referring to a threshold-based algorithm), we can appreciate that the

total number of detections is significantly reduced because it passes from 27 to 11. In

particular, the Baseline CUSUM is able to avoid detections due to load oscillations

around the threshold value. On the other hand, it is unable to address all the issue of

unnecessary detections related to short-time spikes, such as those occurring at samples

30, 45, 55 and 90 in Figure 5(a).

a) Profile 1 b) Profile 2

Figure 5. Baseline and Selective CUSUM models.

The three small boxes on the top of Figure 5(b), instead, denote the activations signaled

by the Selective CUSUM. This algorithm determines robust and selective detections of

the sender hosts because it is able to remove any undesired signal caused by

instantaneous spikes in Figure 5(a), and to detect only the most significant state changes

at samples 55, 185, 210 in Figure 5(b), actually just one more (at sample 55) than the

optimal selection of two signals.

4.2 Selection of guests – Trend-based vs Sample-based

When a host is selected as a sender, it is important to determine which of its guests

should migrate to another host. As migration is expensive, it is important to rely on

adaptive solutions that are able to select few guests that have contributed to the

significant load change of their host. For each host, the proposed adaptive solution is

based on following three steps:

(1) evaluation of the load of each guest;

(2) sorting of the guests depending on their loads;

(3) choice of the subset of guests that are on top of the list.

The first step is the most critical, because there are several alternatives to denote the

load of a guest. Let us consider for example the CPU utilization of five virtual machines

(A-E) in Figure 6 obtained by the VMware monitor.

The typical approach of considering the CPU utilization at a given sample as

representative of a guest load (e.g., Khanna et al. 2006, Wood et al. 2007) is not a robust

choice here because the load profiles of most guests are subject to spikes. For example,

if we consider samples 50, 62, 160, 300 and 351, the highest load is shown by the guest

B, albeit these values are outliers of the typical load profile of this guest.

Even considering as a representative value of the guest load the average of the past

values may bring us to false conclusions. For example, if we observe the guests at

sample 260, the heaviest guest would be A followed by E. This choice is certainly

preferable to a representation based on absolute values, but it does not take into account

an important factor of the load profiles: the load of the guest E is rapidly decreasing

while that of the guest A is continuously increasing.

Figure 6. Profiles of guest machines

The idea is that a guest selection model should not consider just absolute or average

values, but it should also be able to estimate the behavioral trend of the guest profile.

The behavioral trend gives a geometric interpretation of the load behavior that adapts

itself to the not stationary load and that can be utilized to evaluate whether the load state

of a guest is increasing, decreasing, oscillating or stabilizing. Consequently, it is

possible to generate a load representation of each guest based on the computation of a

weighted linear regression of trend coefficients and the actual load value of a server.

After having obtained a load representation for each guest, they sort them from the

heaviest to the lightest and then select only the guests that contribute to one-third of the

total relative load. To give an idea, let us consider two hosts H1 and H2 characterized by

the following load values: (0.25, 0.21, 0.14, 0.12, 0.11, 0.10, 0.03, 0.02, 0.01), and

(0.41, 0.22, 0.20, 0.10, 0.04, 0.02, 0.01), respectively.

In H1, we select the first two guests because the sum of their relative loads 0.46 exceeds

one-third. On the other hand, in H2 we select just the first guest that alone contributes to

more than one-third of the total load.

4.3. Selection of receiver hosts and assignment of guests

Although migration mechanisms are rapidly improving (Kamna & Sugandha 2012,

Ibrahim et al. 2011), live migration remains an expensive task that should be applied

selectively especially in a cloud context characterized by thousands of physical

machines and about one order more of virtual machines. The receiver selection process

must be carefully designed to avoid migration loops that could occur between sender

and receiver hosts. For example, an overloaded resource consuming guest being moved

to a receiver host may trigger a further migration process if the receiver host becomes

part of the senders at next activation. The scheme proposed by (Khanna et al. 2006)

moves all the selected guests to the physical host having the least available resources

sufficient to run them without violating the SLA. If there is no available host, it

activates a new physical machine. Next to performance and SLA requirements, also

bandwidth consumption should be considered in the selection of receiver hosts. The

authors in (Bobroff et al. 2007) introduce prediction techniques and a bin packing

heuristic to allocate and place virtual machines while minimizing the number of

activated physical machines. They also propose an interesting method for characterizing

the gain that a virtual machine can achieve from dynamic migration. (Stage et al. 2009)

propose dynamic scheduling models for the assignment of guests to hosts taking into

account additional migration control parameters like bandwidth adaptation behavior,

minimum and maximum bandwidth usage, iterated pre-copy migration algorithms, and

different termination iteration conditions.

Once selected the receiver hosts, we have to assign them guests selected for migration.

As we want to spread the migrating load to the largest number of receiver hosts, we

want that no receiver should get more than one guest that is, G = R. Hence, we have to

guarantee that the number of guests we want to migrate is G < (N - S). Typically, this

constraint is immediately satisfied because S is a small number, S << N, and typically

G ≤ 2S.

However, if for certain really critical scenarios it results that G > (N - S), we force the

choice of just one guest for each sender host. This should guarantee a suitable solution

because otherwise we have that S > R that is, the entire platform tends to be overloaded.

Similar instances cannot be addressed by an adaptive migration algorithm but they

should be solved through the activation of standby machines (Khanna et al. 2006) that

typically exist in a networked data center. It is also worth to observe that all our

experiments were solved through the method based on the one-third of the total relative

load with no further intervention.

5. Conclusions

Adaptive live migrations of virtual machines are an interesting opportunity to allow

networked infrastructures to guarantee resilience and accommodate changing demands

for different types of processing subject to heterogeneous workloads and time

constraints. Nevertheless, there are many open issues about the most convenient choice

about when to activate migration, how to select guest machines to be migrated, and the

most convenient destinations. These problems are becoming even more severe in

modern data centers and cloud architectures characterized by hundreds of thousands of

virtual machines. The proposed adaptive algorithms and models are able to identify just

the real critical host and guest devices, by considering the load profile of hosts and the

load trend behavior of the guest instead of thresholds, instantaneous or average

measures that are typically used in literature.

References

Ibrahim K. Z., Hofmeyr, S., Iancu, C., Roman, E., Optimized pre-copy live migration
for memory intensive applications, In: Proc. of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011.

Andreolini, M., Casolari, S., Colajanni, M., Messori, M., "Dynamic load management
of virtual machines in a cloud architecture", In: Proc of First Int. Conference on Cloud
Computing, 2009

Casolari, S., Tosi, S., Lo Presti, F., An adaptive model for online detection of relevant
state changes in Internet-based systems, Performance Evaluation, vol. 69, no. 5, 2012.

Page, E. S.: Estimating the point of change in a continuous process. In: Biometrika vol.
44, 1957.

Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application Performance Management in
Virtualized Server Environments, In: Proc. of Network Operations and Management
Symp., 2006.

Stage, A., Setzer, T.: Network-aware migration control and scheduling of differentiated
virtual machine workloads, In: Proc. of 31st Int. Conf. on Software Engineering, 2009.

Clark, C., Fraser, K., Steven, H., Gorm Hansen, J., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live Migration of Virtual Machines, In: Proc. of the 2nd ACM/USENIX
Symp. on Networked Systems Design and Implementation, 2005.

Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C., Mambretti, J., Monga, I.,
Van Oudenaarde, B., Raghunath, S., Wang, P. Y.: Seamless live migration of virtual
machines over the MAN/WAN, Future Gener. Computer System, vol. 22, no. 8, 2006.

DeFanti, T., de Laat, C., Mambretti, J., Neggers, K., St. Arnaud, B.: TransLight: a
global-scale LambdaGrid for e-science, Communications of the ACM, 2003.

Hines, M. R., Gopalan, K.: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning, In: Proc. of the ACM SIGPLAN/
SIGOPS Int. Conf. on Virtual execution environments, 2009.

Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box
Strategies for Virtual Machine Migration, In: Proc. of the 4th USENIX Symp. On
Networked Systems Design and Implementation, 2007.

Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a
Consolidation Manager for Cluster, In: Proc. of the Int. Conf. on Virtual Execution
Environments, 2009.

Chen X., Gao X., Wan H., Wang S., Long X., Application- Transparent Live Migration
for virtual machine on network security enhanced hypervisor. Research paper. China
Communications, 2011.

Kamna, A., Sugandha, S., A Survey on Infrastructure Platform Issues in Cloud
Computing , International Journal of Scientific & Engineering Research, vol. 3, no. 6,
2012.

Ramakrishnan, K. K., Shenoy, P., Van der Merwe, J., Live data center migration across
WANs: a robust cooperative context aware approach, In: Proc. of the 2007 SIGCOMM
workshop on Internet network management, 2007.

VMware Distributed Power Management Concepts and Use. Paragraph: use this for the
first paragraph in a section, or to continue after an extract.

Gerofi, B., Fujita, H. And Ishikawa, Y., An efficient process live migration mechanism
for load balanced distributed virtual environments, In: Proc. of 2010 IEEE International
Conference on Cluster Computing.

Jung, G., Hiltunen, M. A., Joshi, K. R., Schlichting, R. D. And Pu, C., Mistral:
dynamically managing power, performance, and adaptation cost in cloud infrastructures,
In: Proc. of 2010 IEEE International Conference on Distributed Computing Systems.

Shetty, J., Anala M. R. And Shobha, G., A survey on techniques of secure live migration
of vitual machine, In: International Journal of Computer Applications, Vol. 39, No. 12,
Feb. 2012.

Bobroff, N., Kochut, A., Beaty, K., Dynamic Placement of Virtual Machines for
Managing SLA Violations, In: Proc. of the 10th IFIP/IEEE International Symp. On
Integrated Network Management, 2007.

	1. Introduction
	2. Migration of virtual machines
	3. A taxonomy of live migration strategies
	4. Case study
	4.2 Selection of guests – Trend-based vs Sample-based
	4.3. Selection of receiver hosts and assignment of guests

