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Resilient and Adaptive Networked Systems

Modern system infrastructures must accommodate continuously changing demands for

different  types  of  workloads  and  time  constraints.  In  a  similar  context,  adaptive

management  of  virtualized  application  environments  among  networked  systems  is

becoming one of the most important strategies to guarantee resilience and performance of

available computing resources. This chapter analyzes management algorithms that decide

in an adaptive way the transparent reallocation of live sessions of virtual machines in

large numbers of networked hosts. We discuss the main challenges and solutions related

to the adaptive activation of the migration process, the number and location of virtual

machines to migrate.
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1. Introduction

Most  data  centers  were  characterized  by high  operating  costs,  inefficiencies,  and  a

multitude  of  distributed,  heterogeneous  servers  that  added  complexity  in  terms  of

resilience  and management.  In  the  last  years,  enterprises  consolidated  their  systems

through virtualization solutions in order to improve data center efficiency and offer the

benefit of performance and fault isolation, flexible migration, resource consolidation,

and easy creation of specialized environments (Ibrahim et al. 2011). Logically pooling

all system resources and centralizing resource management allows the increment of the

overall node utilization while lowering management costs. 

In this scenario, live migration of virtual machines is one of the main building blocks to

guarantee  resilience  and  high  utilization  of  networked  resources.  Live  migration  is

defined as the transfer of running virtual machine instances from one physical server to

another with little or zero downtime and without interrupting virtualized services (Chen

et al. 2011). There are multiple benefits of live migration among which fault tolerance,

load  balancing,  and  consolidation.  For  instance,  to  avoid  failover  of  the  virtual



machines, it  is necessary to live migrate one or more guest running on one physical

server to another physical server that guarantees continued and uninterrupted service.

Live  migration  has  been  supported  by  the  vast  majority  of  hypervisors,  such  as

VMware,  Xen,  KVM  and  VirtualBox  (Shetty  et  al.  2012).  Moreover,  some  recent

versions (e.g., VMware VMotion) support adaptive migration, although supported by

static threshold-based activation mechanisms. This is a step ahead, but we state that full

resilience and high resource utilization require the research for  adaptive management

algorithms and supports that are able to continuously tune their behavior as a function

of changing operating conditions. Adaptive capacity management requires continuous

monitoring services and runtime decision algorithms for deciding when a physical host

should migrate a portion of its load, which portion of the load should be moved and

where. These problems and solutions represent the focus of this chapter.

The chapter is organized as follows. Section 2 discusses the virtual machine migration

process.  In  Section  3  presents  a  taxonomy  of  live  migration  strategies.  Section  4

analyzes a case study showing the differences between a static and an adaptive selection

strategy. Conclusions are drawn in Section 5.

2. Migration of virtual machines

A typical networked architecture consists of a huge set of physical machines (hosts),

each  of  them  equipped  with  some  virtualization  mechanisms,  from  hardware

virtualization  up  to  micro-partitioning,  operating  system  virtualization,  software

virtualization. These mechanisms allow each machine to host a concurrent execution of

several virtual machines (guest) each with its own operating system and applications.

To accommodate varying demands for different types of processing, the most modern

infrastructures, such as clouds, include adaptive management capabilities and virtual



machine mobility that is, the ability to move transparently virtual machines from one

host to another. In this scenario, the decision algorithm orchestrating the live migrations

has to select one or more sender hosts from which some virtual machines are moved to

other destination hosts, namely receivers. By migrating a guest from an overloaded host

to an unloaded one, it is possible to improve resource utilization and resilience.

The migration algorithms defines three sets: sender hosts, receiver hosts, and migrating

guests, where their cardinalities are denoted as S, R, and G, respectively. Let also N be

the total number of hosts. The algorithm has to guarantee that N ≥ S + R, and that the

intersection between the set of sender hosts and of receiver hosts is null (Andreolini et

al. 2009).

Every virtual machine migration approach shares a common management model made

up of four distinct phases, outlined in Figure 1.

Selection of sender hosts. The first action requires the selection of the set of sender

hosts that require the migration of some of their guests. The idea is to have a migration

algorithm so that the cardinality S of the set of senders is much smaller than the total

number of hosts that is, S << N.

Selection of guests.  Once selected the senders, we have to evaluate how many and

which guests it is convenient to migrate. Even for this phase, the goal is to limit the

number of guests for each host that should migrate, so that G < (N - S). If this does not

occur  after  the  first  evaluation,  the  guest  selection  can  proceed iteratively until  the

constraint  is  satisfied.  (It  is  worth  to  observe  that  in  our  experiments,  no  instance

required an iteration.)

Selection of receiver hosts. Once selected the guests that have to migrate, we have to

define the set of receiver hosts. In these networked infrastructures, the major risk we



want to avoid is a dynamic migration that tends to overload some receiver hosts so that

at  the  successive  checkpoint  a  receiver  may  become  a  sender,  and  so  on.  Similar

fluctuations devastate performance and resilience. 

Assignment of guests. The guests selected for migration are assigned to the receivers

through a management algorithm aiming to satisfy some architectural and/or application

constraints.  For example,  a greedy algorithm may begin to  assign the most onerous

guests to the lowest loaded hosts, and so on until the sender list is completed. Many

other possibilities exist.

Figure 1: Flow diagram of the virtual machine migration process.



3. A taxonomy of live migration strategies

Existing  approaches  to  live  migration  of  virtual  machines  can  be  broadly classified

according to  different  decisions  intervening during the four phases of  the migration

process. These decisions, shown in Figure 2, include the activation strategy, monitoring,

component selection, destination and migration mechanism.

Figure 2. Taxonomy of live migration strategies.

Monitoring.  The monitoring system used throughout all the operations is one of the

most important component of the live migration mechanism. The first decision regards

the performance indicators (measures) used to evaluate the load conditions of hosts and

virtual machines. Different choices are possible, according to the goal of the migration.
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 Performance:  throughput,  utilization  of  the  most  relevant  hardware  resource

components (CPU, disk, memory, network) as in (Stage et al. 2009, Gerofi et al.

2010).

 Power  consumption:  CPU  voltage  at  the  different  power  states  (Jung  et  al.

2010).

 Reliability:  ping  response  times,  service  response  probes  as  HTTP response

times (Stage et al. 2009).

The next decision regards the collection of individual samples through the definition of

an appropriate sampling interval. The collection may be periodic (e.g., every second,

every minute), or random. This decision may influence the statistical properties of the

collected  measures  and  therefore  the  results  of  the  algorithm applied  in  the  virtual

machine migration process, especially at low sampling frequencies.

Once  defined  a  sampling  strategy,  we  define  representation  models that  read  the

sampled time series and produce “reduced views” filtered from outliers and reflecting

the  behavioral  load  trend of  hardware  and  software  resources.  These  representation

models may be linear (e.g.,  moving average, ARMA) or nonlinear (e.g., polynomial,

spline).

Activation  strategy. The  activation  strategy  decides  when  the  live  migration

mechanism has to start. Current solutions operate in two ways: statically or adaptively. 

Static approaches, such as (Khanna et al. 2006,  Wood et al. 2007), set some threshold

value and live migration is triggered as soon as the host load overcomes that predefined

value. For example, the scheme proposed by (Khanna et al. 2006) classifies a host as a

sender or as a receiver depending on whether its load is beyond or below some fixed



thresholds. When the load of a host overcomes the threshold, this solution moves all the

selected guests to the physical host having the least available resources sufficient to run

them without violating the SLA. If there is no available host, it activates a new physical

machine. Static approaches cannot work in a networked system consisting of thousands

of hosts where, at a checkpoint, a threshold may signal hundreds of senders and, at the

successive checkpoint, the number of senders can become few dozen or, even worse,

most servers differ from those of the previous set. Also the decision about which guests

is useful to migrate from one server to another is affected by similar problems if we

adopt some threshold-based method. Adaptive approaches where no static thresholds are

used to activate the live migration process are preferable. In the adaptive scenario, the

activation is triggered by adaptive factors, such as significant changes in the host load

conditions. A significant change is any modification in the statistical behavior of the

load that lasts for a considerable number of consecutive measurements (Casolari et al.

2012).  Considering different  statistical  behaviors brings  to  the detection of  different

significant  changes,  like  trend changes or  state  changes.  A significant  trend change

happens when the trend patterns of  the load vary over  time in their  direction (e.g.,

upward or downward) or in their distribution (e.g., linear or exponential). For example,

Figure 3(a) shows a host load profile (concerning host CPU utilizations) presenting two

trend changes. An exponential increasing trend (until sample 156) is followed by an

exponential decreasing trend (from sample 157 to sample 336) and then by a horizontal

linear  trend  (from  sample  337  to  sample  600).  A  significant  state  change  is  a

considerable  variation  of  the  mean  load  value  that  occurs  either  instantaneously  or

rapidly with respect to the period of sampling and that lasts for a significant number of

consecutive  measurements  (Casolari  et  al.  2012).  The  load  profile  in  Figure  3(b)



presents two significant state changes, one upwards and one downwards. At sample 200,

the mean load value passes from ≈0.3 to ≈0.6, and then it returns to ≈0.3 at sample 420.

 a) Trend change profile b) State change profile

Figure 3. Load profiles of hosts.

The ability of capturing such changing conditions in host and guest load profiles is

crucial for an activation strategy to reduce the number of migrations to just the most

significant ones. 

In the case study described in Section 4, we present the implementation of an approach

that adaptively selects as the senders only the hosts subject to significant state changes

of their load. On the other hand, (Stage et al. 2009) consider the bandwidth consumption

during  migration  and propose a  system that  classifies  the  various  loads  in  order  to

consolidate more guests on each host based on typical periodic trends, if they exist.

Similar considerations are also valid for the component selection which is responsible

for  choosing  hosts  and  virtual  machines  that  will  participate  in  the  live  migration

process.

Destination. The  destination  host  can  be  in  the  same  local  subnet  or,  in  the  most

modern networked systems such as the clouds, even located in another geographical



network. Common solutions for the selection of receiver hosts are limited to guests that

can  migrate  only  among  hosts  that  are  within  the  same subnet  and  share  common

storage (Kamna & Sugandha 2012). This limit prevents adaptive migration of guests

among federated datacenters that will be more and more important in the next future for

performance and resilience reasons.

Some works  (Ramakrishnan  et  al.  2007,  Travostino  et  al.  2006,  Clark  et  al.  2005)

address the problems of guest migration across WANs and aim to reduce downtime

during migration.  For  example,  the solution proposed in  (Clark et  al.  2005)  is  very

efficient because it is able to transfer an entire machine causing a downtime of few

hundreds of milliseconds. (Travostino et al. 2006) migrate virtual machines on a WAN

area with just 1-2 seconds of application downtime through lightpath (DeFanti et al.

2003).  (Ramakrishnan  et  al.  2007)  propose  cooperative,  context-aware  migration

mechanisms  through  existing  server  virtualization  technologies  and  by  proposing

dynamic storage replication technologies to facilitate migration across geographically

interconnected machines. 

Migration mechanism. Current live migration mechanisms are mainly based on the

pre-copy or post-copy schemes. 

In the pre-copy scheme, the bulk of the guest’s memory state is migrated to a target

node even as the guest continues to execute at a source host (Hines & Gopalan, 2009). If

a transmitted page is dirtied, it is re-sent to the target in the next round. This iterative

copying of dirtied pages continues until either a small, writable working set has been

identified,  or  a  preset  number  of  iterations  is  reached,  whichever  comes  first.  This

represents the end of the memory transfer phase and the beginning of service downtime.



The guest is then suspended and its processor state plus any remaining dirty pages are

sent to a target node. Finally, the guest is restarted and the copy at source is destroyed. 

On a high-level, post-copy migration defers the memory transfer phase until after the

guest’s  CPU  state  has  already  been  transferred  to  the  target  and  resumed  there.

Post-copy first transmits all processor state to the target, starts the guest at the target,

and  then  actively  pushes  memory  pages  from  source  to  target.  Concurrently,  any

memory  pages  that  are  faulted  on  by the  guest  at  target,  and  not  yet  pushed,  are

demand-paged over the network

4. Case study

In this chapter, we present a case study application of adaptive migration algorithms in

an experimental  testbed of  30 physical  machines  hosting 140 virtual  machines.  The

adopted virtualization solution is VMware ESXi 4.0. We collect periodic samples of the

CPU utilization through the VMware monitor (VMware) with a frequency of one every

twenty seconds. We show an application of a guest selection algorithm that is able to

adaptively  select  the  most  critical  guests  for  each  server  on  the  basis  of  a  load

trend-based model instead of traditional approaches based on instantaneous or average

load measures.

The focus  is  on the  first  two phases  (selection of  the sender  host,  and selection  of

guests) that concern open research issues and that represent the core of Section 4.1 and

Section  4.2,  respectively.  The  last  two  phases  (selection  of  receiver  hosts,  and

assignment of guests) are hinted at in Section 4.3. 

4.1 Selection of sender hosts – CUSUM vs Static models



The identification of the set of sender hosts represents the most critical problem for the

adaptive  management  of  a  networked  architecture  characterized  by  thousands  of

machines  where  an  abuse  of  guest  migrations  would  devastate  performance  and

resilience.

We  present  an  adaptive  algorithm  for  sender  hosts  selection  that  guarantees  high

performance and low overheads since it is able to limit the number of migrations to few

really necessary instances. The algorithm considers the load profile evaluated through

the CUSUM-based stochastic model (Page 1957). The goal is to signal only the hosts

subject  to  significant  state  changes of  their  load,  where  we  define  a  state  change

significant if it is intensive and persistent. This is not an easy task when the application

context  consists  of  large  numbers  of  hosts  subject  to:  many  instantaneous  spikes,

non-stationary  effects,  and  unpredictable  and  rapidly  changing  load.  As  examples,

Figure 4(a) and Figure 4(b) show two typical profiles of the CPU utilization of two

hosts in a cloud architecture. The former profile is characterized by a stable load with

some spikes but there is no significant state change in terms of the previous definition.

On  the  other  hand,  the  latter  profile  is  characterized  by  some  spikes  and  by  two

significant state changes around sample 180 and sample 220. A robust detection model

should arise no alarm in the former case, and just two alarms in the latter instance. In a

similar scenario, it is clear that any detection algorithm that takes into consideration an

absolute or average load value as alarm mechanism tends to cause many false alarms.

This is the case of threshold-based algorithms (Khanna et al. 2006, Wood et al. 2007)

that are widely adopted in several management contexts. Just to give an example, let us

set the load threshold to define a sender host to 0.8 of its CPU utilization (done for

example in (VMware)). In Figures 4, the small triangles on the top of the two figures

denote the checkpoints where the threshold-based detection algorithm signals the host



as a sender. There are 10 signals in the former case and 17 in the latter case instead of

the  expected  0  and  2.  This  initial  result  denotes  a  clear  problem  with  a  critical

consequence on performance: we have an excessive number of guest migrations even

when not strictly necessary. 

a) Profile 1 b) Profile 2

Figure 4. CPU load in two hosts.

The  proposed  algorithm  adopts  a  different  approach  for  selecting  sender  hosts  by

evaluating  the  entire  load  profile  of  a  resource  and  aiming  to  detect  abrupt  and

permanent load changes. To this purpose, we consider a stochastic model based on the

CUSUM algorithm (Page 1957) that works well even at runtime. We consider both the

simpler  Baseline  CUSUM implementation  and  the  more  sophisticated  Selective

CUSUM implementation presented in (Andreolini et al. 2009). The Baseline CUSUM

model statically uses reference values for its parameters, while the selective CUSUM

algorithm adaptively adjusts its parameters according to data characteristics.

In  Figure  5,  we  report  the  results  obtained  by  using  both  Baseline  and  Selective

CUSUM for sender host selection. If we compare the triangles plotted in Figures 5 with



those in Figures 4 (referring to a threshold-based algorithm), we can appreciate that the

total number of detections is significantly reduced because it passes from 27 to 11. In

particular,  the Baseline CUSUM is able to avoid detections due to load oscillations

around the threshold value. On the other hand, it is unable to address all the issue of

unnecessary detections related to short-time spikes, such as those occurring at samples

30, 45, 55 and 90 in Figure 5(a). 

a) Profile 1   b) Profile 2

Figure 5. Baseline and Selective CUSUM models.

The three small boxes on the top of Figure 5(b), instead, denote the activations signaled

by the Selective CUSUM. This algorithm determines robust and selective detections of

the  sender  hosts  because  it  is  able  to  remove  any  undesired  signal  caused  by

instantaneous spikes in Figure 5(a), and to detect only the most significant state changes

at samples 55, 185, 210 in Figure 5(b), actually just one more (at sample 55) than the

optimal selection of two signals.



4.2 Selection of guests – Trend-based vs Sample-based

When a host is selected as a sender, it is important to determine which of its guests

should migrate to another host. As migration is expensive, it  is important to rely on

adaptive  solutions  that  are  able  to  select  few  guests  that  have  contributed  to  the

significant load change of their host. For each host, the proposed adaptive solution is

based on following three steps:

(1) evaluation of the load of each guest;

(2) sorting of the guests depending on their loads;

(3) choice of the subset of guests that are on top of the list.

The first step is the most critical, because there are several alternatives to denote the

load of a guest. Let us consider for example the CPU utilization of five virtual machines

(A-E) in Figure 6 obtained by the VMware monitor.

The  typical  approach  of  considering  the  CPU  utilization  at  a  given  sample  as

representative of a guest load (e.g., Khanna et al. 2006, Wood et al. 2007) is not a robust

choice here because the load profiles of most guests are subject to spikes. For example,

if we consider samples 50, 62, 160, 300 and 351, the highest load is shown by the guest

B, albeit these values are outliers of the typical load profile of this guest.

Even considering as a representative value of the guest load the average of the past

values may bring us to false conclusions.  For example,  if  we observe the guests  at

sample 260,  the heaviest  guest  would be A followed by E.  This  choice is  certainly

preferable to a representation based on absolute values, but it does not take into account

an important factor of the load profiles: the load of the guest E is rapidly decreasing

while that of the guest A is continuously increasing.



Figure 6. Profiles of guest machines

The idea is that a guest selection model should not consider just absolute or average

values, but it should also be able to estimate the behavioral trend of the guest profile.

The behavioral trend gives a geometric interpretation of the load behavior that adapts

itself to the not stationary load and that can be utilized to evaluate whether the load state

of  a  guest  is  increasing,  decreasing,  oscillating  or  stabilizing.  Consequently,  it  is

possible to generate a load representation of each guest based on the computation of a

weighted linear regression of  trend coefficients and the actual load value of a server.

After having obtained a load representation for each guest,  they sort them from the

heaviest to the lightest and then select only the guests that contribute to one-third of the

total relative load. To give an idea, let us consider two hosts H1 and H2 characterized by

the following load values:  (0.25,  0.21,  0.14,  0.12,  0.11,  0.10,  0.03,  0.02,  0.01),  and

(0.41, 0.22, 0.20, 0.10, 0.04, 0.02, 0.01), respectively.

In H1, we select the first two guests because the sum of their relative loads 0.46 exceeds

one-third. On the other hand, in H2 we select just the first guest that alone contributes to

more than one-third of the total load. 



4.3. Selection of receiver hosts and assignment of guests

Although  migration  mechanisms  are  rapidly  improving  (Kamna  & Sugandha  2012,

Ibrahim et al. 2011), live migration remains an expensive task that should be applied

selectively  especially  in  a  cloud  context  characterized  by  thousands  of  physical

machines and about one order more of virtual machines. The receiver selection process

must be carefully designed to avoid migration loops that could occur between sender

and receiver hosts. For example, an overloaded resource consuming guest being moved

to a receiver host may trigger a further migration process if the receiver host becomes

part of the senders at next activation. The scheme proposed by  (Khanna et al. 2006)

moves all the selected guests to the physical host having the least available resources

sufficient  to  run  them  without  violating  the  SLA.  If  there  is  no  available  host,  it

activates a new physical machine.  Next to performance and SLA requirements,  also

bandwidth consumption  should be considered in the selection of receiver hosts.  The

authors  in  (Bobroff  et  al.  2007)  introduce  prediction  techniques  and a  bin  packing

heuristic  to  allocate  and  place  virtual  machines  while  minimizing  the  number  of

activated physical machines. They also propose an interesting method for characterizing

the gain that a virtual machine can achieve from dynamic migration. (Stage et al. 2009)

propose dynamic scheduling models for the assignment of guests to hosts taking into

account  additional  migration control  parameters  like bandwidth adaptation  behavior,

minimum and maximum bandwidth usage, iterated pre-copy migration algorithms, and

different termination iteration conditions.

Once selected the receiver hosts, we have to assign them guests selected for migration.

As we want to spread the migrating load to the largest number of receiver hosts, we

want that no receiver should get more than one guest that is, G = R. Hence, we have to

guarantee that the number of guests we want to migrate is G < (N - S). Typically, this



constraint is immediately satisfied because S is a small number, S << N, and typically

G ≤ 2S.

However, if for certain really critical scenarios it results that G > (N - S), we force the

choice of just one guest for each sender host. This should guarantee a suitable solution

because otherwise we have that S > R that is, the entire platform tends to be overloaded.

Similar  instances  cannot  be  addressed  by an  adaptive  migration  algorithm but  they

should be solved through the activation of standby machines (Khanna et al. 2006) that

typically  exist  in  a  networked  data  center.  It  is  also  worth  to  observe  that  all  our

experiments were solved through the method based on the one-third of the total relative

load with no further intervention.

5. Conclusions

Adaptive live migrations of virtual machines are an interesting opportunity to allow

networked infrastructures to guarantee resilience and accommodate changing demands

for  different  types  of  processing  subject  to  heterogeneous  workloads  and  time

constraints. Nevertheless, there are many open issues about the most convenient choice

about when to activate migration, how to select guest machines to be migrated, and the

most  convenient  destinations.  These  problems  are  becoming  even  more  severe  in

modern data centers and cloud architectures characterized by hundreds of thousands of

virtual machines. The proposed adaptive algorithms and models are able to identify just

the real critical host and guest devices, by considering the load profile of hosts and the

load  trend  behavior  of  the  guest  instead  of  thresholds,  instantaneous  or  average

measures that are typically used in literature.
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