
A Scalable Architecture for Real-Time Monitoring
of Large Information Systems

Mauro Andreolini, Michele Colajanni, Marcello Pietri

University of Modena and Reggio Emilia
Via Vignolese, 905/b - 41125 Modena, Italy

Email: {mauro.andreolini,michele.colajanni,marcello.pietri}@unimore.it

ABSTRACT

Data centers supporting cloud-based services are
characterized by a huge number of hardware and
software resources often cooperating in complex
and unpredictable ways. Understanding the state
of these systems for reasons of management and
service level agreement requires scalable monitor-
ing architectures that should gather and evaluate
continuosly large flows in almost real-time peri-
ods. We propose a novel monitoring architecture
that, by combining a hierarchical approach with
decentralized monitors, addresses these challenges.
In this context, fully centralized systems do not
scale to the required number of flows, while pure
peer-to-peer architectures cannot provide a global
view of the system state. We evaluate the monitoring
architecture for computational units of gathering
and evaluation in real contexts that demonstrate the
scalability potential of the proposed system.

Index Terms—Large Scale; Distributed; Data Center;
Monitoring; Cloud; Scalability.

I. INTRODUCTION

Cloud computing is the most used model to
support processing of large data volumes through
several clusters of servers. A dramatic increase
in resource utilization is common to any cloud
provider. For example, according to [1], already in
2008 Google processed about 20 petabytes of data
per day through an average of 100.000 MapReduce
jobs spread across approximately 400 machines,
thus crunching 11.000 machine years in a single
month. As of late 2010, Hadoop [2] clusters at
Yahoo span 25000 servers, and store 25 petabytes
of application data, with the largest cluster being

3500 servers [3]. Cloud SQL Server uses Microsoft
SQL Azure [4] to deploy an Internet scale relational
database service to clusters consisting of thousands
of nodes.

These large infrastructures are monitored through
a multitude of agents that extract and store mea-
surements about the performance and the utilization
of specific hardware and software resources. The
resource sampling interval is usually kept constant
and described in terms of its frequency. For exam-
ple, Sony uses the closed-source Zyrion Traverse
database [5] to claim the monitoring of over 6000
devices and applications over twelve datacenters
across Asia, Europe and North America. The virtual
data collects half a million resource data streams
every five minutes. This scenario opens important
challenges in the design of an advanced monitoring
infrastructure that must be able to scale over million
of heterogeneous resource data streams, and must
avoid single points of failure to ensure service
continuity.

As discussed in Section II, no existing solution
addresses these goals. Fully centralized monitors
cannot scale to the desired number of resource
data streams. Current decentralized, per-data-center,
hierarchical monitors such as Ganglia [7] are lim-
ited to computing average measures spanning over
several nodes. However, the complexity of current
workloads in modern data centers calls for more
sophisticated processing, such as the identifica-
tion of correlations among different resource data
streams, or the detection of anomalies in the global
system state. The majority of current monitoring
infrastructures, including OpenNMS [8], Zabbix [9],
Zenoss [10] and Cacti [11] are not designed to be

2012 IEEE Second Symposium on Network Cloud Computing and Applications

978-0-7695-4943-9/12 $26.00 © 2012 IEEE

DOI 10.1109/NCCA.2012.24

143

2012 IEEE Second Symposium on Network Cloud Computing and Applications

978-0-7695-4943-9/12 $26.00 © 2012 IEEE

DOI 10.1109/NCCA.2012.24

143

resilient to failures. If, for any reason, a software
module fails due to a bug, insufficient computing
resources, human mistake, it must be restarted man-
ually. In a very large system it is easy for a system
administrator to miss these failures and to keep a
monitor running incorrectly and producing garbage
data streams for long periods.

In this paper we propose an architecture for mon-
itoring large-scale network infrastructures hosted in
data centers. Each data center is equipped with
its own decoupled monitoring infrastructure. Each
monitor adopts a hierarchical scheme to ensure
scalability with respect to the number of monitored
resources. The internal operations of the monitor are
geared towards two objectives: to provide real-time
access to single performance samples or graphs,
and to reduce the expected time for the user to
retrieve more sophisticated analysis. The latter goal
is obtained through a batch-oriented subsystem that
will be detailed in the following sections. Every
component in the infrastructure is designed to be
resilient to failures. In particular, whenever possible,
we enrich the existing software modules with re-
dundancy and failover mechanisms. Otherwise, we
automatically restart the modules in case of failure.
This paper focuses on the subsystem for local ac-
quisition and analysis and shows its scalability. Our
analyses reveal that the subsystem architecture is
able to:

• collect 2946 resource data streams from 128
probes on a single monitored node every sec-
ond with a resources utilization < 10%;

• collect 377088 resource data streams per
second from 128 different monitored nodes
through a single collector node;

• collect and process over three millions resource
data streams per second.

The rest of this paper is organized as follows.
Section II compares the state-of-the-art about large-
scale system monitoring. Section III describes the
architecture of the monitoring infrastructure and
motivates the choice of the components. Section IV
discusses various implementation details. Section V
investigates the scalability limits of the proposed
architecture. Section VI concludes the paper with
some final remarks.

II. RELATED WORK

Scalability and high availability are not addressed
by existing architectures.

Centralized monitors do not scale to the desired
number of resource data streams. Old collection
frameworks include syslog and system activity re-
port on most UNIX-based systems. Hawkeye [20]
is a monitor for grid systems. Nagios [19] and
Cacti [11] are a popular alerting and monitoring sys-
tem respectively, which has inspired a lot of mod-
ern monitors, such as OpenNMS [8], Zabbix [9],
Zenoss [10], GroundWorks [21] and Hyperic [22].
Most monitoring infrastructures, including Open-
NMS [8], Zabbix [9], Zenoss [10] and Cacti [11]
are not designed to be resilient to failures although
they can scale well. For example, Hyperic is able
to collect and analyze more than 9,000 resources
and 11,000 metrics per minute, for hundreds of
servers with different operating systems and appli-
cations which produce more then 6,500 metrics per
minute at MOSSO, and more then 37,000 resources
and 20,000 metrics per minute at CONTEGIX.
The system introduced in [6], which uses Ganglia
and Syslog-NG to accumulate data into a central
MySQL database, shows severe scalability limits
at only 64 monitored nodes, each one collecting
20 metrics every 30 seconds. Zabbix claims the
monitoring of up to 100,000 monitored devices
and up to one million of metrics (no time unit is
reported), and thousands of checks per second. It
requires a database (e.g., MySQL, PostgreSQL, Or-
acle or SQlite) to store the collected metrics. Zenoss
currently manages networks as large as 32,000
devices. These and other centralized products alone
cannot cope with the challenges presented in this
paper. In particular, their scalability is often severely
limited by their RDBMS back-end. Moreover, they
cannot be easily balanced, and are not designed
to be fault tolerant. In other words, centralized
solutions represent a serious scalability bottleneck
and introduce single point of failure.

The rise of large distributed systems has pro-
moted the research for more scalable hierarchical
systems, such as Ganglia [7]. Hierarchical monitors
overcome some of the limitations of centralized
solutions at the cost of limited system manage-
ability, which depends on different site specific

144144

administrators. Further, the root node in the system
may present a single point failure similar to the
centralized model. Finally, they tend to compute
efficiently just average measures spanning over sev-
eral nodes, but the workload complexity in modern
data centers requires more sophisticated processing,
such as the identification of correlations among
different resource data streams, or the detection of
anomalies in the global system state.

Astrolabe [12] is a hybrid solution that com-
bines a hierarchical scheme with an unstructured
P2P routing protocol for distributed communica-
tion. While it is highly scalable and resilient, its
manageability is a complex task since it generates
a lot of network traffic. Unstructured systems do
not put any constraint on placement of data items
on peers and how peers maintain their network
connections. Resource lookup queries are flooded
to the directly connected peers, which in turn flood
their neighboring peers. Queries have a TTL (Time
to Live) field associated with maximum number of
hops, and suffer of non-deterministic result, high
network communication overload and limited scal-
ability [23].

III. DESIGN

The monitored large distributed architecture con-
sists of several units (physical racks and logical
clusters) replicated in the same data center or even
spanning geographically distributed data centers.
The behavior of each resource is described through
the tuple <resource name, sampling interval, time
series>, that in this paper is named resource data
stream.

The decisions that have inspired the design of the
proposed architecture share two important goals: to
dominate the complexity of the monitoring prob-
lem and to avoid single points of failure. The
huge problem size makes it literally impossible
to deploy a centralized infrastructure. Even worse,
service centralization would not be fault-tolerant.
For these reasons, each cluster is equipped with
an independent monitor infrastructure. This seems
the only viable alternative to scaling to an arbitrary
number of data centers, as implemented by few
recent monitoring systems.

In order to scale to millions of data streams per
sample interval, it is mandatory to shift preliminary

computations, such as resource sampling and sanity
checks on the sampled data, as close as possible
to the edge of the monitored infrastructure. Fail-
ure to do so would result in a system that can
process possibly useless data. Ideally, the resource
data streams should be initially filtered (or marked
as invalid, anomalous) on the monitored nodes.
The resulting streams can be sent to a storage
system. This approach scales because most checks
are computationally inexpensive and the monitored
nodes are much more than those dedicated to the
monitoring infrastructure. Pushing frequent and pre-
liminary checks towards the edge of the monitored
infrastructure is now carried out only by Ganglia
and Astrolabe [12]. Since the size of the sampled
data is a crucial factor in large monitoring systems
that can impact the network bandwidth, our system
also perform live compression of the resource data
streams.

At each sampling time, new samples are added
to the resource data stream, and an extra overhead
is paid due to data storage. As literature shows,
in this scenario characterized by frequent, small,
random database requests [13], write operations to
secondary storage do suffer of scalability issues.
To reduce this overhead, write operations should
be grouped and batched to secondary storage. The
map-reduce paradigm [14] is well suited to this
purpose. The adoption of map-reduce also allows
our architecture to perform complex analyses over
the collected resource data streams in a scalable way
through commodity hardware. On the other hand,
the most advanced monitors compute at most mov-
ing averages of regular windows of past samples.
To the best of our knowledge, this paper represents
one first step towards a richer analysis in a quasi
real-time scenario.

To avoid single points of failure and to en-
sure service continuity, we enforce redundancy of
every component of the monitoring architecture.
Whenever possible, we deploy our solutions using
software that can be easily replicated. In other cases,
we wrap the component through custom scripts that
detect failures and restart it, in case.

At the lowest level of infrastructure, a set of
hardware and software resources can be associated
to subnets, physical racks, distinct production areas,
or logical clusters. In this scenario, each monitored

145145

node (Figure 1) is equipped with an independent
collection agent, which main duty is to ensure that
each resource of interest is continuously monitored.
To this purpose, each resource has associated a
probe process that collects a set of indexes (such as
response time, throughput and utilization) at specific
time intervals. Both parameters (performance in-
dexes and sampling interval) are configurable by the
user. The collection agent receives the samples from
a set of probes, performs preliminary validity checks
on them, updates the resource data streams and
sends them in a coded form (usually, a compression)
to a dedicated collector node.

 Monitored node

resource

resource

...

process
resource

...

resource
process

resource
...

... ...

 Collection agent

process
probe

system probe

process
probe

coding

filtering

comm.s

collect

manager

...
Collection agent

...

...

to associate
collector

resource
data streams

management

Fig. 1. Monitored node

The collector node is the main component of
the distributed cluster data filter. It receives the
filtered and coded resource data streams, performs
the necessary decompression and stores them for
further analysis or a real-time plot. In the latter case,
processing stops and the user is able to see immedi-
ately the behavior of the resource data stream. In the
former case, data is made available to the distributed
analyzer system. Its purpose is to compute more
sophisticated models on the resource data streams,
such as identification of the relevant components in
the system, trend analysis, anomaly detection and
capacity planning. The goal of these actions is to
provide a “reduced view” of the entire cluster by
discarding the negligible data streams in terms of
system management. At the end of the analysis,
the resulting resource data streams are persistently
stored and available as (key, value) pairs, where
“key” is a unique identifier of a measure and “value”
is usually a tuple of values describing it (for exam-

 Distributed cluster
 data filter

 Cluster

 Distributed Analyzer System

...

 Collector node

... Collector node

comm.s

decoding

 Collector

 TSDB
...

Analyzer
node

...

...

 Analyzer node

Data
analysis

...
 Data analysis

scripts

MapReduce...

to distributed
data storage

Fig. 2. Cluster collection, filtering and analysis

ple timestamp, host name, service/process, name of
the monitored performance index, actual value).

IV. IMPLEMENTATION

In this section we outline some implementation
details of the proposed architecture.

We have used open source tools that can be
modified and adapted to our goals. The operating
system adopted in the prototype is GNU/Linux
(we used Debian, Ubuntu and Fedora in different
experimental testbeds), enhanced with the software
packages from the Cloudera repository (CDH4).
The languages used for the deployment of our
modules are Bash (v4.2.36) and C (where efficiency
is needed, such as in our modified monitor probes).
The batch processing framework is Hadoop [2],
version 2.0. Our choice is motivated by the dramatic
scalability improvement with respect to traditional
RDBMS-based data storage architectures under ran-
dom, write intensive data access patterns [15]. Other
frameworks like Traverse [5] and Microsoft SQL
Azure [4] are proprietary, or are not adequate to
supports long-term network growth [7], [16].

146146

On each monitored node, probing is performed
through standard, off-the-shelf monitoring tools
(vmstat, pidstat, sar); the associated performance
indexes include CPU utilization, disk and network
bandwidth, number of page faults and memory
usage, both per-process and system-wide. We have
modified the nethogs code to measure also per-
process bandwidth consumption, which was natively
not available in batch form. The output of each
probe process is piped into a C program (called
agent). This module keeps a constant, configurable
window of past samples representing the resource
data stream and performs preliminary sanity checks
on it. These checks are executed through dynamic,
pluggable modules that receive in input the data
stream and respond with TRUE or FALSE. If at least
one check fails, the stream is tagged as invalid, but
it is never discarded; this facilitates later debugging
operations. The following checks are implemented
now: missing value, value out of range, sequence
of null values. The pre-processed streams are coded
(in our prototype, GZIP-compressed) and finally
forwarded to the selected monitor node of the
distributed cluster data filter. The selection of the
monitor node is made by a specific module of the
agent (Figure 1, comm.s), which ensure the best
monitor choice and availability. This choice is made
on the basis of reachability and the workload of the
collector nodes. For this purpose, each monitored
node knows a subset of all collector nodes in
the cluster. Each sample has the following record
format:
<index> <timestamp> <value> <monitored host> <tag> .. <tag>

where “index” is the name of the desired per-
formance or utilization index, “timestamp” is the
sampling instant in UNIX time format, “value” is
the sampled value returned from the probe, “moni-
tored host” is the symbolic name or the IP address
of the host executing the probe, and “tag” is an
information cookie of the form “name=value” that
enriches the description (there can be multiple tags).
Some example records are displayed below:
block.in 1345742145 3 host=webserver12 check=true
cpu.user 1345742115 9 host=node67 check=true
gproc.net.rxkBs 1345742120 3.21000003814 iface=eth0

host=client45 pid=1130 name=apache2 check=true

Each component (probe, agent) is wrapped by a
BASH script that restarts it in case of exit with an

error status. After a preconfigured number of restart
failures, a warning alert is sent to the administrator
of the corresponding service.

The resource data streams gathered by the col-
lection agent are sent to the Distributed cluster data
filter, shown in Figure 2. Here, a collector process
receives the compressed and filtered resource data
streams. The received streams are decoded and sent
to two different storage: one for real-time plotting
of the resource data streams, and one for later, non-
real-time processing. If needs be, several collectors
can be added to scale the acquisition process to
the desired number of resource data streams. The
collector is designed to scale up to thousands of
streams, provided that the limitations on the maxi-
mum number of TCP connections and open files be
raised. In GNU/Linux, this can be easily achieved
by recompiling the Linux kernel and the GNU C
library.

The former storage is handled by
OpenTSDB [17], a software for the storage
and configurable plotting of time series. We have
chosen OpenTSDB because it is open-source,
scalable, and interacts with another open-source
distributed database, HBase [18]. It retains time
series for a configurable amount of time (defaults
to forever), it creates custom graphs on the fly, it
allows to plug it into an alerting system such as
Nagios [19]. The OpenTSDB’s secret ingredient
that helps to increases its reliability, scalability and
efficiency is asynchbase. It is a fully asynchronous,
non-blocking HBase [18] client, written from the
ground up to be thread-safe for server apps. It has
far fewer threads and far less lock contention; it
uses less memory and provides more throughput
especially for write-heavy workloads. The latter
storage, called data sync, receives data destined
to further processing, performed by the following
subsystem. To enhance the performance of the
storage engine, we have chosen to pack the resource
data streams in larger chunks (64KB by default)
and write them asynchronously to a distributed file
system that can be scaled to the appropriate size by
easily adding backend nodes. The distributed file
system we have chosen is the Hadoop Distributed
File System (HDFS). It creates multiple replicas of
data blocks and distributes them on compute nodes
throughout a cluster to enable reliable, extremely

147147

scalable computations. It is also designed to run
on commodity hardware, is highly fault-tolerant,
provides high throughput access to application data
and is suitable for applications that have large data
sets.

The Distributed analyzer system is composed by a
set of analyzer nodes (Figure 2). Each analyzer node
runs arbitrary batch jobs that analyze the resource
data streams. Typical analyses include:

1) computing moving averages of resource data
streams, in order to provide a more stable
representation of an internal resource’s status;

2) correlating several resource state representa-
tions in order to exclude secondary flows;

3) computing prediction trends of resource rep-
resentations on different time scales.

The batch jobs first read the necessary resource
data streams (map) from the distributed cluster
data filter and runs the appropriate scripts (reduce).
The result is a reduced set of (key, value) pairs
that is written to the distributed data storage. The
goal shared by these operations is to compute a
reduced state information that is able to tell whether
the service is about to misbehave or not and, in
the former case, also to tell which resource is
the culprit. The different analyzer functions also
produce the status of each node and cluster, and few
figures of merit that show the health status of the
entire data center (longer term predictions, principal
component analysis, capacity planning).

We have chosen the Pig framework for the imple-
mentation of the analysis scripts. Pig offers richer
data structures over pure map-reduce, for example
multivalued and nested dictionaries. Each Pig script
is compiled into a series of equivalent map-reduce
scripts that process the input data and write the
results in a parallel way. We implemented scripts to
aggregate data both temporally and spatially (over
nodes). Further analysis include anomaly detections,
trend analysis and supports for capacity planning on
a longer time scale.

The reduced streams representing the system
state must be written into a database. The data
storage must scale with an increasing number of
data streams, must be fault tolerant and should
be oriented to time series management. We have
chosen Apache HBase [18] as the distributed anal-
ysis storage for many reasons, which include the

homogeneity and the reuse of components. Apache
HBase is a distributed column-oriented database
built on top of HDFS, designed from the ground-
up to scale linearly just by adding nodes. It is not
relational and does not support SQL, but thanks to
the proper space management properties, it is able
to surpass a traditional RDBMS-based system by
hosting very large and sparsely populated tables on
clusters implemented on commodity hardware. In
our architecture, the HBase storage is responsible to
preserve all the analyzed information about nodes,
clusters and datacenter.

V. PERFORMANCE EVALUATION

We evaluate the scalability of the proposed archi-
tectures in terms of number of monitored resource
data streams. In particular, we aim to find out:

• how many resource data streams can be moni-
tored per physical host (intra-node scalability);

• how many physical hosts can be monitored
(inter-node scalability).

TABLE I
AVERAGE RESOURCE UTILIZATION OF THE COLLECTION AGENT

Number of Number of CPU Main memory Network
probes metrics (%) (%) (%)

1 25 0.3 0.4 0.005
2 48 0.5 0.5 0.009
4 94 1.1 0.6 0.019
8 186 1.8 0.9 0.041
16 370 2.9 1.4 0.085
32 738 4.1 2.6 0.173
64 1474 6.0 4.8 0.352

128 2946 9.8 9.3 0.681
256 5890 23.1 18.3 1.392

We used two hardware platforms: Amazon EC2 and
Emulab. We present the results about the Amazon
EC2 platform, because experiments on Emulab give
quite similar outcome. In the considered infras-
tructure, the backing storage is shared across the
instances (EBS), and the theoretical network con-
nectivity is up to 1Gbps. The virtual machines are
running instances of the TPC-W benchmark suite
(one for client, one for the application server, one
for the DBMS). The application server is Tomcat
(v6.0), while the DBMS is MySQL (v5.1). In each
monitored node, one probe is dedicated to system-
related performance monitoring through the out-
put of the vmstat and sar monitors. The remain-
ing probes are process-related through pidstat and

148148

TABLE II
AVERAGE RESOURCE UTILIZATION OF THE COLLECTOR AND THE ANALYZER NODE

Number of Number of Number of CPU Network CPU Network
monitored nodes data streams metrics collector collector analyzer analyzer

1 128 2946 0.6 0.450 0.1 0.023
2 256 5892 0.9 0.899 0.1 0.037
4 512 11784 2.0 1.797 0.2 0.089
8 1024 23568 3.6 3.594 0.3 0.176
16 2048 47136 8.1 7.188 0.7 0.341
32 4096 94272 17.1 14.375 1.8 0.702
64 8192 188544 33.6 28.750 2.5 1.597
128 16384 377088 69.9 57.500 5.2 2.996

TABLE III
AVERAGE RESOURCE UTILIZATION OVER THE DISTRIBUTED CLUSTER DATA FILTER

Number of Number of Number of Number of CPU Network CPU Network
monitored data metrics collector collector collector analyzer analyzer

nodes streams nodes (AVG) (AVG) (AVG) (AVG)
128 16384 377088 1 69.6 57.539 5.2 2.996
256 32768 754176 2 70.4 57.890 6.2 3.209
512 65536 1508352 4 71.1 58.020 5.5 3.007

1024 131072 3016704 8 70.7 57.970 5.1 2.891

nethogs2 monitors. This system probe collects 25
difference performance indexes, while each process
probe collects 23 different metrics. The sampling
interval is configured at 1 second for each probe.

A. Intra-node scalability

In the first scenario, we evaluate how many
resource data streams (metrics) can be handled for
each monitored node. We use one collector node
and one analyzer node running a single script that
computes the moving average for every resource
data stream. The detail of the resources of the moni-
tored node is the following: micro instance, 613 MB
memory, up to 2 EC2 Compute Units (Dual-Core
AMD Opteron(tm) Processor 2218 HE, cpu 2600
MHz, cache size 1024 KB), EBS storage, dedicated
network bandwidth of 100 Mbps per node.

Table I reports the average resource consumption
of the collection agent as a function of the number
of resource data streams monitored. From this table
we see that the most used resources is the CPU. At
128 probes, the CPU utilization is about 10%. This
threshold is commonly used as the largest fraction
of resource utilization that administrators are com-
fortable devoting to monitoring. We have adopted
this as our target maximum resource utilization for
the monitoring system. Hence, on each monitored
node, we can collect up to 128 probes for a total of

2946 resource data streams per second. We recall
that a period of one second is much shorter than
commonly adopted sampling periods that typically
do not go below one minute.

B. Inter-node scalability

In the following set of experiments, we add
monitored nodes with the same probe setup and we
measure the resource consumption of the collector
and of the analyzer node.

Table II reports the average resource consumption
of the collector and analyzer nodes as a function of
the number of monitored nodes. From this table, we
see that even in this case the most used resource is
the CPU of the collector node. We have executed
experiments up to stress the CPU mainly due to the
decompression of multiple heterogeneous packets.
At 128 monitored hosts, the CPU of the collector
node is saturated. In this scenario, the system is
monitoring 128∗128 = 16384 resource data streams
and 2946 ∗ 128 = 377088 metrics per second.

We have added collector nodes and incremented
the number of monitored hosts to evaluate the scal-
ability of the distributed cluster data filter. Table III
reports the average resource utilization across the
collector nodes.

We kept adding collectors up to 1024 monitored
nodes. We also added more HDFS and HBASE

149149

nodes to support the write throughput after 256
nodes. In this scenario, one hour of experiment
produces more than 30 GB of data only for the real-
time subsystem, monitoring 128 ∗ 1024 = 131072
different streams per second (or about 130000 dif-
ferent processes). We have also measured the total
network bandwidth that is about 60 MB/s and we
have monitored 2946 ∗ 1024 = 3016704 metrics.

VI. CONCLUSIONS

We propose a novel architecture for monitoring
large-scale network infrastructures hosted in data
centers with the goal of guaranteeing scalability and
availability. These choices are mandatory when you
have to support gathering and analysis operations
of huge numbers of data streams coming from
cloud system monitors. This paper focuses on the
monitoring component of a logical cluster or a
physical rack, where all operations are carried out
within real-time constraints in the order of seconds.
Our experiments on real architectures show the
scalability limits of the proposal that can support
more than 3 millions of data streams per second.
As the interval of sampling is typically much larger
than one second, these results demonstrate that huge
margins of improvement are feasible when multiple
components of the proposed scheme are used.

ACKNOWLEDGMENT

The authors acknowledge the support of the
MIUR-PRIN project AUTOSEC “Autonomic Secu-
rity”

REFERENCES

[1] Jeffrey Dean, Sanjay Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 50th anniversary issue: 1958 - 2008s, no. 51, p. issue 1,
01/2008.

[2] “Apache Hadoop,” 2006, – http://hadoop.apache.org/.
[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The

hadoop distributed file system,” Mass Storage Systems and
Technologies, IEEE / NASA Goddard Conference on, vol. 0,
pp. 1–10, 2010.

[4] “Microsoft sql azure,” 2009, –
http://www.microsoft.com/windowsazure/sqlazure/.

[5] “A scalable streaming log aggregator,” 2008, –
http://www.zyrion.com/company/whitepapers/Zyrion Traverse.

[6] C. E. A. Litvinova and S. L. Scott, “A proactive fault tolerance
framework for high-performance computing,” in Proceedings
of the 9th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN2010), ser. PDCN
2010. Calgary, AB, Canada: ACTA Press, Feb. 16-18 2010.

[7] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler,
“Wide area cluster monitoring with ganglia,” Cluster Comput-
ing, IEEE International Conference on, vol. 0, p. 289, 2003.

[8] “Opennms, world’s first enterprise grade network management
application platform,” 2002-2012, – http://www.opennms.org.

[9] “Zabbix, the enterprise-class monitoring solution for everyone,”
2001-2012, – http://www.zabbix.com.

[10] “Zenoss, transforming it operations,” 2005-2012, –
http://www.zenoss.com.

[11] “Cacti, the complete rrdtool-based graphing solution,” 2009-
2012, – http://www.cacti.net.

[12] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining,” ACM Transactions on
Computer Systems, vol. 21, no. 2, pp. 164–206, May 2003.

[13] M. Andreolini, M. Colajanni, and R. Lancellotti, “Assessing
the overhead and scalability of system monitors for large data
centers,” in Proceedings of the First International Workshop on
Cloud Computing Platforms, ser. CloudCP ’11, New York, NY,
USA, 2011, pp. 3:1–3:7.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in OSDI, 2004, pp. 137–150.
[Online]. Available: http://www.usenix.org/events/osdi04/tech/
dean.html

[15] J.-S. Leu, Y.-S. Yee, and W.-L. Chen, “Comparison of map-
reduce and sql on large-scale data processing,” Parallel and
Distributed Processing with Applications, International Sym-
posium on, vol. 0, pp. 244–248, 2010.

[16] E. Imamagic and D. Dobrenic, “Grid infrastructure monitoring
system based on nagios,” in Proceedings of the 2007
workshop on Grid monitoring, ser. GMW ’07. New York,
NY, USA: ACM, 2007, pp. 23–28. [Online]. Available:
http://doi.acm.org/10.1145/1272680.1272685

[17] “Opentsdb, a distributed, scalable time series database,” 2010-
2012, – http://opentsdb.net.

[18] “Apache HBase,” 2007, – http://hbase.apache.org/.
[19] “Nagios enterprises,” 2009-2012, – http://www.nagios.org.
[20] D. Thain, T. Tannenbaum, and M. Livny, “Distributed comput-

ing in practice: the condor experience.” Concurrency - Practice
and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[21] “Groundworks, the open platform for it monitoring,” 2012, –
http://www.gwos.com.

[22] “Hyperic, open source systems monitoring, server monitoring,
and it management software,” 2012, – http://www.hyperic.com.

[23] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
replication in unstructured peer-to-peer networks,” in Proceed-
ings of the 16th international conference on Supercomputing
(ICS2002), New York, NY, USA, 2002, pp. 84–95.

150150

