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Abstract—In large scale systems, real-time monitoring of
hardware and software resources is a crucial means for any
management purpose. In architectures consisting of thousands
of servers and hundreds of thousands of component resources,
the amount of data monitored at high sampling frequencies rep-
resents an overhead on system performance and communication,
while reducing sampling may cause quality degradation.

We present a real-time adaptive algorithm for scalable data
monitoring that is able to adapt the frequency of sampling and
data updating for a twofold goal: to minimize computational and
communication costs, to guarantee that reduced samples do not
affect the accuracy of information about resources.

Experiments carried out on heterogeneous data traces refer-
ring to synthetic and real environments confirm that the pro-
posed adaptive approach reduces utilization and communication
overhead without penalizing the quality of data with respect to
existing monitoring algorithms.

Index Terms—Adaptive Sampling; Monitoring; Cloud Com-
puting; Large-Scale; Scalability.

I. INTRODUCTION

Resource management, anomaly detection and prevention

in large scale architectures require continuous monitoring of

system and software resources [1], [2]. The problem with

frequently gathered and updated system information is that it

may cause computational and traffic overhead [3], [4]. Hence,

it is an open challenge to solve the trade-off intrinsic in

monitoring tens of thousands of resources subject to real-

time management objectives: keeping the overheads low and

the quality of extracting system information high. Existing

techniques are inefficient, unsuitable to real-time monitoring

purposes, or are strongly coupled with specific architectures

(e.g., [5]). For example, techniques based on adaptive dimen-

sionality [6] require the whole data series, hence they cannot

be used in real-time contexts; delta-encoding techniques based

on static thresholds [7], [8] do not work because they do not

take into account that in system monitoring the dataset tends

to be highly variable.

This paper introduces a novel real-time adaptive algo-

rithm that can be used as a monitoring mechanism for large

architectures because it guarantees low computational and

communication costs and high quality of data. It reaches this

goal by adapting sampling intervals to data characteristics and

state changes. When system behavior is relatively stable, it

settles large sampling intervals so that the quantity of data

that is gathered and sent to the analyzer is reduced. When

significant differences between sampled data occur, the sam-

pling frequency is augmented so to capture relevant changes

in system performance. The proposed algorithm automatically

chooses the best settings for monitoring sampling intervals,

and it updates such settings through adaptive frequencies that

aim to minimize the error of gathered data.

Experiments show that the proposed algorithm is able to

reduce the computational and communication costs of moni-

toring up to 75% with respect to fine-grained static sampling,

with an introduced error, with respect to complete sampling,

that is below 8%. A further advantage of the proposed al-

gorithm is that it leaves open the choice between reducing

overhead and reducing quality. Better/worse quality in state

representation can be achieved by reducing/augmenting over-

head saving. These results represent a major improvement

with respect to state-of-the-art techniques which either are

accurate and resource expensive or they reduce computational

and communication costs by worsening too much the quality

of sampled data [3], [7], [9], [10].

The remainder of this paper is organized as following.

Section II defines the problem of real-time monitoring for

large-scale systems. Section III presents the proposed adap-

tive monitoring algorithm. Section IV analyzes experimental

results achieved on synthetic and real scenarios. Section V

compares this paper against the state-of-the-art. Section VI

concludes the paper with some final remarks.

II. MONITORING CHALLENGES

In large scale architectures, the aim of real-time monitoring

is to collect, store and process large volumes of data in order to

obtain two types of views: the behavior of the whole system,

and the details of critical or interesting components [2], [11].

We refer to a typical monitoring architecture (e.g., [2]–[4],

[12]–[14]) shown in Figure 1 consisting of two logical layers:

at the lowest layer, a set of resources on the monitored nodes

are scanned from some probes attached to a collection agent

(collection phase); then, the sampled metrics are sent to the

higher layer called collector (sending phase). The algorithms

considered in this paper can be applied at the collection and

at the sending phase. The details about other components,

such as data storage, data analyzer for system knowledge, and

management decisions are beyond the scope of this paper.

In the collection phase, system metrics are collected on

the basis of the proposed adaptive algorithm and then

sent to the collectors: we can adapt sampling intervals by

choosing the best trade-off between quality and computa-

tion/communication overheads. In the sending phase, the al-
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Fig. 1: Monitoring Architecture

gorithm is applied to already collected samples, hence the

margins of adaptivity operate on quality vs. communication

savings. On the positive hand, it is possible to adapt the pa-

rameters of the algorithm by comparing the recently sampled

data with previous collected, analyzed and forwarded data.

Several other methods (e.g., [7], [8]) are based on data

collection at fixed sampling time intervals and forwarding

of new information only if it differs by some static numeric

threshold. Although this approach can reduce the amount of

gathered and transmitted data, it may lead to highly inaccurate

results. The proposed algorithm allows system managers to

choose the preferred trade-off between overhead reduction and

information quality.

Figure 2 reports three scenarios. The top figure represents

the real system behavior where samples are gathered at maxi-

mum frequency (e.g., one second). The middle figure denotes

a system representation where overhead savings are preferred

with respect to information quality; this is achieved through

a low frequency sampling method that guarantees a reduction

of the amount of collected data but also a loss of evidence

of the majority of load spikes. The bottom figure refers to

the proposed adaptive algorithm that aims to preserve the

most useful information of the real system trace but also to

reduce the amount of collected data with respect to continuous

sampling.

We should also consider that the quality of sampled and

transmitted data may be affected by several sources of error.

• Delay. When data are gathered at fixed time intervals,

there are time windows in which significant changes may

occur while system collectors and analyzers do not notice

them. This delay affects the quality of monitoring ap-

proaches especially when they tend to use large sampling

intervals in order to limit the quantity of collected and

transmitted data.

Fig. 2: Comparison of high, low and adaptive monitoring

• Static sampling. In large scale architectures consisting

of several resources, it is impossible to anticipate the

best monitoring frequency for each resource because they

are heterogeneous and typically highly variable, and it

is impracticable to rely on human intervention. Hence,

any static choice about threshold values and/or sampling

interval risks to be a significant source of errors.

We can conclude that real-time adaptive sampling is manda-

tory in large scale architecture. The goal now is to introduce

an effective real-time monitoring algorithm that must guaran-

tee the best trade-off between the amount of collected and

transmitted data and the effects of sampling reduction on the

quality of system representation.

III. ADAPTIVE MONITORING

The real-time adaptive monitoring proposed in this paper

consists of three adaptive algorithms: one for the collection

phase (Adaptive Sampling), that is used for the mainstream

description of the overall approach; one for the sending phase

(Adaptive Forwarding); and one for the continuous check

and re-evaluation of the parameters of the algorithms after

the training phases (Adaptive Supervision). We recall that

any monitoring system must solve a basic trade-off that is,

reducing the quantity of collected data reduces the capacity

of achieving a realistic representation of a system resource

behavior. Our algorithms do not attempt to find the solution

that fits for all scenarios because this goal is impossible. On

the other hand, we leave open such trade-off through the

parameters Gain denoting the reduced overhead, and Quality
denoting the ability of representing the real system behavior.

The trade-off between Gain and Quality is represented

through the Eval metric as:

Eval = w ·Gain+ (1− w) ·Quality (1)

where w ∈ (0, 1) is a parameter of choice. As the quantity

of saved data impacts on the quality of the representation, the
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proposed algorithms allow the system administrator to decide

how to regulate this trade-off. Values of w > 0.5 put more

emphasis on Gain than Quality; the vice versa is true for w <
0.5, while w = 0.5 gives equal importance to both metrics.

We advance that for reason of space we leave the discussion

about the tuning of this parameter for a future paper.

There are several possible measures for Gain and Quality,

but we find useful to adopt the following choices. In our

algorithms, Gain is the ratio between the number of data

collected by the proposed algorithms and the number of data

collected by the baseline algorithm that samples data at the

highest frequency. Higher Gain values denote algorithms aim-

ing to reduce the computational and communication overhead

of monitoring.

Quality denotes the ability of an algorithm to represent the

state changes of a system resources in the most accurate way.

In our algorithm, Quality in its turn is a combination of the

Normalized Root Mean Square Error (NRMSE) [15], and the

F-measure that is the weighted average of the precision and

recall.

Quality =
Fmeasure+ (1 −NRMSE)

2
(2)

where we recall that Fmeasure and NRMSE denote values

∈ (0, 1). The motivation for using two measures instead of

one is that the dataset in the considered scenarios are highly

variable, hence the NRMSE alone is unable to guarantee an

accurate quality measure (see for example the discussions in

[16]). For this reason, we consider also Fmeasure [17] as

the measure of the capacity of the monitoring algorithm to

identify significant load spikes. Hence, by referring to [17], a

true positive is counted when a real spike is identified, while

a false positive denotes the identification of a spike that has

no correspondence in the reality; a true negative indicates the

correct absence of spikes, and a false negative denotes a lack

of identification of a spike.

A. Parameters of the adaptive algorithms

The proposed real-time adaptive algorithms work by dis-

tinguishing periods of relative stability from periods of high

variability of the monitored resources. The basic idea is to

limit computational and communication overhead, and at the

same time to guarantee that important system changes are not

missed . To this purpose, we reduce the quantity of monitored

data when a resource is relatively stable, and we increase it

during periods of high variability.

The adaptivity of the algorithms is based on the choice of

the following two main parameters:

1) The sampling interval t determines the time interval

that elapses from the collection of one sample to the

successive. The lower the sampling interval, the higher

the number of data to gather and transmit.

2) The tolerable variability ∆ discriminates stable from

variable states by determining the value of deviation

between consecutive samplings. When the difference

among samples is lower than ∆, the monitored resource

is considered to be in a stable state; when this difference

is higher than ∆, the resource is considered as highly

variable. The lower the tolerable variability ∆, the higher

the probability of the resource to incur some relevant data

changes.

We should consider that the algorithms can be applied to

resource states characterized by different ranges of values

(e.g., the CPU utilization goes from 0 to 100%, the network

bandwidth from 0 to say 10Gbps). Hence, in the training phase

we use a percentage ∆% that is independent of the specific

monitored values. After the training phase, we use ∆ that is

related to the values of each monitored resource. It is obtained

by evaluating the first quartile Q1 and third quartile Q3 of all

points collected during the training phase, and by referring to

percentage ∆% through the following equation [18]:

∆ = ∆% · 1.5 · (Q3−Q1) (3)

B. Adaptive sampling algorithm

The adaptive sampling algorithm is characterized by an

initial training phase that is used for the self-choice of all

parameters: the minimum tsm and the maximum tsM of the

sampling period, the threshold for the identification of a peak

∆s
c, and the threshold that identifies the lowering of sampling

interval at minimum ∆s
t .

At the beginning of the training phase, we set the minimum

and maximum possible values for each of these parameters.

The training phase evaluates the best values for them by

choosing those that maximize Eval in (1). This search has

an exponential cost in terms of complexity because in the

naive form we have to evaluate all combinations of the

representations of data sampled during the training phase. This

does not represent a real problem because this training is done

once, on λs data points x of the series X . However, we reduce

this initial computational cost by adopting a binary search

that is able to pass to a log2 complexity of the naive search,

with respect to the parameters tsm,tsM ,∆s
c and ∆s

t . For reason

of space we postpone the details of the computational costs

of the algorithms in a future paper, but we advance that the

average cost of the proposed algorithm (during many twelve-

hour experiments) is between the cost of static algorithms

using t=tm and t=tM . At the end of the training phase, we

have the best values associated to each parameter as {t̄sm, ¯tsM ,

∆̄s
c, ∆̄s

t}.

After the training phase, the sampling phase uses the

Adaptive Sampling Function (Alg. 1) for the next samples x
of X . It initially sets ∆s to zero (no error), and its sampling

interval ts to ¯tsm. Until there are data to collect, ∆s is increased

by the current error δi = xs
i − xs

pi, where xs
i is the current

sample and xs
pi is the last sampled one. When the absolute

value of ∆s exceeds the threshold ∆̄s
c, and ∆̄s exceeds ∆̄s

t

(high difference between the two points), then the sampling

interval ts is set to tsm. Otherwise, if ∆s exceeds ∆̄s
c but not

∆̄s
t , then the sampling interval ts is decreased. In both cases,

∆s is set to zero because the last sampled point becomes xi
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and the error is set again to null. If ∆s has not exceeded ∆̄s
c,

this means that the values of the two points are similar and the

state is stable, so the sampling interval ts can be increased.

Algorithm 1 Adaptive sampling function

ts ⇐ ¯tsm
∆s ⇐ 0
pi⇐ λs

i⇐ pi+ts

while True do
∆s ⇐ ∆s + ( xi - xpi )

if |∆s| > ∆̄s
c then

Xs ⇐ {Xs, xi}

if |∆s| > ∆̄s
t then

ts ⇐ ¯tsm
else

ts ⇐ max( ¯tsm, ts − ¯tsm)

∆s ⇐0
else

ts ⇐ min( ¯tsM , ts + ¯tsm)

pi⇐ i
i⇐ i + ts

C. Adaptive forwarding algorithm

The Adaptive Forwarding algorithm is similar to the Adap-

tive Sampling algorithm. The main difference is that now we

can dynamically evaluate the quality of collected data Xs

with respect to the state representation Xr and we can decide

whether to forward to the collector all sampled data or just a

subset of them because the quality would not degrade and we

would limit overhead.

Even in this phase, we have a training phase (λr data points)

for the self-choice of the parameters of the algorithm: trm
and trM are the minimum and the maximum values of the

sampling intervals, respectively; ∆r
c and ∆r

t are the threshold

that identifies a peak and the threshold after which tr must

be set to trm, respectively. The best choices {t̄rm, ¯trM , ∆̄r
c , ∆̄

r
t}

are identified through a binary search that evaluates the best

Eval for all combinations of feasible parameters.

After the training phase, the Adaptive forwarding algorithm

uses the Adaptive Forwarding function described in (Alg. 2).

In this case, each collected point in Xc is forwarded (Xr ⇐
{Xr, x

c
i}) when the absolute value of ∆r exceeds ∆̄r

c .

Even more important, this algorithm is able to adapt dy-

namically its parameters {t̄rm, ¯trM , ∆̄r
c , ∆̄

r
t} on the basis of the

comparison between collected and new data. The goal is to

avoid a degradation of the Quality measure through the so

called Adaptive Supervision algorithm. It evaluates the error

between the collected series Xs and the forwarded series Xr.

The error evaluation is performed each λr samples through

the Quality function defined in (2). When the evaluated

Quality is lower than w (1), then the algorithm re-evaluates

the parameters {t̄rm, ¯trM , ∆̄r
c , ∆̄

r
t}, by adapting them on the

basis of the last sampled data. This Adaptive Supervision

algorithm allows the monitoring model to adapt its parameters

to time series that are characterized by different trends with

respect to the dataset analyzed during the training phase.

Algorithm 2 Adaptive Forwarding function

tr ⇐ ¯trm
∆r ⇐ 0
pi⇐ λr

lpi⇐ pi
i⇐ pi+tr

while i < length(Xs) do
∆r ⇐ ∆r + ( xs

i - xs
pi )

if |∆r| > ∆̄r
c then

Xr ⇐ {Xr, x
c
i}

if |∆r| > ∆̄r
t then

tr ⇐ ¯trm
else

tr ⇐ max( ¯trm, ts − ¯trm)

∆r ⇐0
else

tr ⇐ min( ¯trM , ts + ¯trm)

pi⇐ i
i⇐ i + tr

if ( pi - lpi ) > λr then

{ ¯trm, ¯trM , ∆̄r
c, ∆̄

r
t} ⇐AdaptiveSupervision(Xs[lpi,. . . ,pi],

Xr[lpi,. . . ,pi] )
lpi⇐ pi

IV. PERFORMANCE EVALUATION

In this section we report the most significant experimental

evaluations that demonstrate the ability of the proposed algo-

rithms in satisfying the requirements of adaptivity, quality and

quantity introduced in Section II.

A. Experimental platforms

For the experiments we used the monitoring platform de-

ployed on Amazon EC2 [19] and Emulab [20], that is also de-

scribed in [14]. In the considered testbed, the monitored nodes

execute different applications such ad Apache2, MySQL, Java

and PHP programs subject to TCP-W [21] and RUBiS [22]

workload models. MapReduce jobs and MongoDB queries are

used for data distribution and analysis.

We present the results obtained from experiments performed

over more than 1,000 nodes that generate about 140K series,

each lasting for about 12 hours. For comparison purposes, we

varied the sampling intervals from 1 to 30 seconds. Each node

is characterized by 25 types of performance indicators and

related series; each process is characterized by 20 time series;

moreover, we have 12 specific statistics related to Apache

users, MySQL and MongoDB queries, MapReduce jobs. The

presented results are related to w = 0.5 that is, we consider

that Gain and Quality have the same importance. Evaluations
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related to different weights are not reported because of space

reasons.

We initially consider the Adaptive Sampling algorithm that

is related to the collection phase. The evaluations are carried

out by comparing the results referring to the sampled series

Xs
i against those of the series sampled every second Xi (i =

1, . . . , 140K). This comparison can be achieved only at the

end of the experiments when the latter series are completed.

In particular, we aim to find:

• the relations between training parameters and algorithm

performance, and the impact of binary search applied to

the choice of the Eval parameter;

• the dependence of algorithm’s performance on series

related to different resources, and its robustness with

respect to sampling intervals and threshold parameters;

• the performance of the proposed algorithms compared to

existing methods.

B. Training phase

We apply the Adaptive Sampling algorithm to the whole

series by considering different intervals for training: from

5 to 200 samples. We focus on four macro groups (CPU,

memory, network, disk) because they include system and

process performance. Due to the different amount of metrics

associated to each group, the number of analyzed series are

20K for the CPU, 26K for the memory, 46K for the network,

11K for the disk and 37K for the other metrics (Other). Table I

reports the Gain and the Quality divided by group and related

to the dimension of the training set λs. The best value for

Eval is calculated as the average between Gain and Quality

(1) shown in Section III. The results for Eval as a function

of the training set size λs are shown both in Figure 3 and in

Table II. Figure 3 shows the best values for Eval divided by

group, while Table II shows the results summary for all the

140K series.

TABLE I: Performance evaluation

λ
s Ev. Parameters CPU Memory Network Disk

5
Gain (%) 76,96 26,43 32,53 95,41

Quality (%) 85,45 99,99 99,84 81,12

10
Gain (%) 92,75 48,84 62,42 97,97

Quality (%) 84,28 99,06 98,34 93,30

25
Gain (%) 95,69 38,14 70,74 92,63

Quality (%) 86,09 96,77 81,56 86,05

50
Gain (%) 95,37 46,56 75,71 98,32

Quality (%) 85,53 98,95 82,42 84,19

100
Gain (%) 95,19 53,83 76,98 98,39

Quality (%) 78,74 95,32 94,80 78,24

150
Gain (%) 96,77 51,37 75,61 98,91

Quality (%) 81,10 93,17 89,49 78,61

200
Gain (%) 96,54 40,65 80,23 98,85

Quality (%) 80,60 98,14 76,50 71,43

By using a small training set size, the parameters t̄sm and
¯tsM tend to be small (e.g., from 1 to 3, and from 1 to 5 times

of the sampling interval of the original series, using a λs of 10

samples). This result is motivated by inspecting the function

responsible to convert the thresholds (expressed in percentage)

into the absolute series-related values, since the majority of

load spikes related to few data points becomes smoothed on a

longest series, and vice versa. This trend is also visible looking

at the results for Gain and Quality. When using small λs and/or

small t̄sm and ¯tsM , the Gain is relatively low, while the Quality

is high. By increasing λs, the Quality decreases while the Gain

increases. This tendency is visible in all results, but especially

for network and disk resources. Moreover, the results show

that a λs of at least 10 samples is enough to obtain high

performance (AVG Gain 75.5% Quality 93.75%). This result

helps to reduce the cost of the algorithm during the training

phase, in which large training sets seem not required.

We perform some experiments in order to demonstrate the

robustness of the Adaptive Sampling algorithm with respect

to different settings of the sampling interval ts, the threshold

parameters ∆s and the training sets. We added and subtracted

not more than 20% from the value of the best tsm, tsM , ∆s
c , ∆s

f

previously calculated. We also use different training set of the

same λs length into each series. We obtain that the averages of

Gain and Quality differ of at most 15% from the best values

in the 96.51% of cases, from 15% to 25% in the 3.47% of

cases, and we have less than 0.02% of outliers.

TABLE II: Performance evaluation summary

λs Fmeasure NRMSE Quality Gain Eval
(%) (%) (%) (%) (%)

5 95,20 87,11 91,16 56,86 74,01

10 95,57 88,60 92,09 75,13 83,61

25 91,31 83,67 87,49 73,70 80,60

50 91,00 84,26 87,63 78,90 83,27

100 89,99 83,48 86,74 81,09 83,92

150 89,48 81,42 85,45 80,53 82,99

200 84,48 78,53 81,51 79,03 80,27
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Fig. 3: Best values for Eval as a function of the window

size used for training
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Fig. 4: Examples of high-sampled and reduced series using the adaptive algorithm for each type of resource

C. Impact of type of series on performance

We evaluate the performance of the Adaptive Sampling

algorithm as a function of different types of series. We present

some significative examples for each group of resources in

Figures 4a, 4b, 4c and 4d. The four figures shows at the top

the series sampled at the highest frequency, while at bottom

the series are sampled with the Adaptive Sampling algorithm.

Table III reports the values of Gain and Quality related to each

class of resource.

TABLE III: Results of Gain and Quality (ref. Fig. 4)

CPU Memory Network Disk

Gain (%) 85,83 51,44 66,38 97,75

Quality (%) 99,82 99,85 98,53 100,00

The results show that the value of Quality tends to be

very high in any instance: series with high variability such

as CPU and network (Figures 4a and 4c); stable series such

as memory and disk (Figures 4b and 4d). On the other hand,

the Gain value is high (98%) in correspondence of stable

series (e.g., disk), while decreases (51%) for series presenting

a recursive linear trend (e.g., memory). In variable series, the

Gain grows according to decreasing number of load peaks:

it is 66% in highly variable network samples, but it is 86%

for the CPU. By using the adaptive algorithm, the Gain is

nearly always more than the 50% while its average is about

the 75%. Since the average Quality is always more than 81%,

these tests demonstrate that the proposed adaptive algorithm

is suitable for any time series related to systems or processes

performance.

One of the problems is related to the computational com-
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plexity of the Eval computation. For this reason, we adopted

also an adaptive binary search and compared its results with

those obtained by the complete search. We cannot use the

basic binary search because it does not guarantee that it can

find all peaks because of the peculiarity of most considered

series. The experiments shows that an adaptive binary search

achieves the same results in the 93.08% of cases, similar

results (±5%Eval) in the 6.51% of cases, and just 0.40%

of outliers. By using this technique, it is possible to reduce

the computational cost of the training phase to log2 while

maintaining a precision level higher than 99.2% in more than

99.6% of cases with respect to the naive search.

D. Performance comparison

We finally compare the results obtained using the proposed

adaptive algorithms against those obtained by the state-of-the-

art algorithms based on delta-encoding and static thresholds

(e.g. [7]), and that considering a static sampling frequency.

TABLE IV: Algorithm based on static frequency sampling

t
Fmeasure NRMSE Quality Gain Eval

(%) (%) (%) (%) (%)

2 72,37 89,15 80,76 50,00 65,38

5 53,22 81,86 67,54 80,00 73,77

10 44,33 78,14 61,24 90,00 75,62

20 33,29 72,63 52,96 95,00 73,98

From the experiments over all the 140K series, we note

that the static sampling frequency algorithm has a Gain equal

to 1 − 1/t (e.g., 50% t=2, 80% t=5), but it is affected by a

low quality of data: Fmeasure ranges from about 72% when

the sampling interval t is very low (t=2) to 33% when t=20

(Tab. IV). Moreover the Quality is quite low if considering

the related frequency of sampling (e.g. 80,76% with t=2). The

most important result is that it never achieves an Eval higher

than 76%. The sampling interval t of the algorithm based on

delta-encoding and static thresholds is fixed, hence this value

must be chosen a priori. Table V reports just the Gain related to

the sending phase, because the results for the collection phase

are identical to those shown for the static sampling algorithm.

We finally report the best results obtained by the proposed

adaptive algorithm in Tab. VI, using the parameters calculated

in Section IV-B.

The algorithm based on delta-encoding and static thresholds

has an average Eval of about 70,65%. Its best performance

is Eval=77,61% (by using t=5 and ∆r
c%

=10). By comparing

these values with the results obtained with our Adaptive Sam-

pling algorithm (Eval=83,92%), we note that the proposed

algorithm increases the performance of more than 6% with

respect to the best value of the algorithm based on delta-

encoding and static thresholds, and more than 13% with

respect to its average. We emphasize also that the average

Eval of the Adaptive Sampling algorithm is better than 10%

with respect to the average Eval of the static algorithm. We

should consider that the parameters that made the Adaptive

Sampling algorithm static are very rarely chosen (less than 3%

of times), since the inequality between tm and tM allows to

achieve a better trade-off between Gain and Quality. The Eval
value of about 83% is robust for any choice of the training set

size larger than 10 samples and lower than 200 samples.

TABLE V: Delta encoding and static threshold algorithms

t ∆r
c%

Fmeasure NRMSE Quality Gain Eval
(%) (%) (%) (%) (%)

1

0 100,00 100,00 100,00 5,93 52,97
1 90,86 99,58 95,22 12,89 54,06
2 89,94 99,16 94,55 21,47 58,01
5 83,94 96,43 90,19 43,82 67,01

10 63,18 87,50 75,34 72,48 73,91

2

0 72,36 89,14 80,75 53,26 67,01
1 65,16 89,12 77,14 56,47 66,81
2 64,68 89,11 76,90 61,13 69,02
5 62,92 87,85 75,39 70,88 73,14

10 52,68 86,62 69,65 82,14 75,90

5

0 53,21 81,86 67,54 81,14 74,34
1 48,05 81,84 64,95 82,40 73,68
2 48,04 81,83 64,94 83,74 74,34
5 47,02 81,72 64,37 87,29 75,83

10 45,17 81,50 63,34 91,88 77,61

10

0 44,34 78,14 61,24 90,52 75,88
1 40,12 78,14 59,13 91,21 75,17
2 39,64 78,14 58,89 91,95 75,42
5 39,11 78,14 58,63 93,88 76,26

10 35,73 78,16 56,95 96,29 76,62

TABLE VI: Adaptive algorithm

Fmeasure NRMSE Quality Gain Eval

(%) (%) (%) (%) (%)

89,99 83,48 86,74 81,09 83,92

V. RELATED WORK

To reduce the overhead of data acquisition in large system

monitoring, we can distinguish lossy and lossless techniques

that are mainly oriented to time series data compression.

Classical lossless techniques cannot achieve a compaction rate

as high as methods which are customized to the nature of time

series, but they can be applied to data independently [10].

Lossy techniques can be further distinguished between

offline and online schemes. Offline techniques need to obtain

the whole series, while the online techniques process the

data points on the fly. Other techniques, such as adaptive

dimensionality [6], differ from the proposed approach because

they aim to reduce the dimensionality of series.

The field of offline lossy techniques is rich of proposals,

such as Fast/Discrete Fourier [23] and Wavelet [24] Transform,

Piecewise Aggregate Approximation [25], Singular Value De-

composition [26], Symbolization [27] and Histograms [28].

Some recent studies achieve probabilistic or deterministic error

bounds on individual data points [29], but these algorithms

work by assuming the knowledge of the entire time series [10],
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hence they are unsuitable to real-time monitoring contexts

considered in this paper. Other approaches based on linear

segmentation (e.g., PLA [9], sliding window [30]) impose a

wait time during the reconstruction of the series, because they

use the first data point of a time series as the starting data

point of a segment and use the next data point to evaluate the

approximation error. The three main variants of this algorithm

improve the quality for specific data sets, but they are not

robust if we consider arbitrary datasets [9], [10].

The state-of-the-art in the field of online lossy techniques

can be distinguished between delta-encoding techniques based

on static thresholds [7], [8], and architecture-related aggrega-

tion techniques [5]. These latter methods are strongly coupled

with the architectural layer and are inapplicable to a generic

monitor infrastructure. Furthermore, they can be efficient for

specific datasets, but they do not guarantee any robustness

and quality level with respect to datasets originated by dif-

ferent distribution nor to different application scenarios as the

proposed algorithms do.

The delta-encoding techniques based on static thresholds

are applicable to any monitor infrastructure, but the choice

of a static sampling frequency does not allow to solve the

trade-off between Gain and Quality that represents the main

novelty of the proposed approach. An accurate evaluation of

the improvements of an adaptive approach with respect to the

state of the art is carried out in the previous section.

VI. CONCLUSION

We propose a real-time adaptive algorithm for scalable data

monitoring that is able to adapt dynamically sampling intervals

and update frequencies in order to minimize computational

and communication costs, while guaranteeing high accuracy

in capturing relevant changes in system behavior. These qual-

ities are mandatory when you have to support gathering and

analysis operations of huge numbers of data streams coming

from large and heterogeneous resource monitors. A large set

of experiments performed on real and synthetic traces show

that the proposed adaptive algorithm reduces the resource

utilization and the communication overhead without penalizing

the quality of data with respect to the state-of-the-art real-time

algorithms.
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