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Abstract. Current monitoring solutions are not wellsuited to mon-
itoring large data centers in different ways:lack of scalability,scarce
representativity ofglobal state conditions,inability in guaranteeing
persistence in service delivery, and the impossibility of monitoring multi-
tenant applications. In this paper, we present a novel monitoring archi-
tecture that strives to address these problems. It integrates a hierarchical
scheme to monitor the resources in a cluster with a distributed hash
table (DHT) to broadcast system state information among different mon-
itors. This architecture strives to obtain high scalability, effectiveness and
resilience, as well as the possibility of monitoring services spanning across
different clusters or even different data centers of the cloud provider. We
evaluate the scalability of the proposed architecture through an exper-
imentalanalysis and we measure the overhead of the DHT-based com-
munication scheme.

Keywords:Monitoring architecture·Cloud Computing·Large-scale·
Scalability·Multi-tenancy

1 Introduction

Cloud Computing is the most adopted model to support the processing of large

data volumes using clusters of commodity computers. According to Gartner,

Cloud Computing is expected to grow 19 % in 2012, becoming a $109 billion

industry compared to a $91 billion market last year. By 2016, it is expected to

be a $207 billion industry. This esteem compares to the 3 % growth expected in

the overall global IT market. Several companies such as Google [1], Microsoft [2],

and Yahoo [3] process tens of petabytes of data per day coming from large data

centers hosting several thousands nodes. According to [4], from 2005 to 2020,

the digital universe will grow by a factor of 300, from 130 EB to 40000 EB, or

40 trillion GB (more than 5200 GB per person in 2020). From now until 2020,

the digital universe will about double every two years.

In order to satisfy service level agreements (SLAs) and to keep a consistent

state of the work ows in this tangled layout, such growing large infrastructuresfl
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are usually monitored through a multitude of services that extract and store mea-

surements regarding the performance and the utilization of speci c hardware andfi
software resources. These monitoring tools are operated by cloud providers and

o ered to the services  owners, but also ad-hoc monitoring solutions are designedff ’
in order to satisfy the requirements of big companies which own their private

cloud infrastructures. For example, Sony uses the closed-source Zyrion Traverse

database [5] to claim the monitoring of over 6000 devices and applications over

twelve data centers across Asia, Europe and North America. The virtual data

layer within the solution collects half a million resource data streams every vefi
minutes.

This scenario requires the design of an advanced monitoring infrastructure

that satis es several properties:fi

1. Scalability.It must cope with a large amount of data that must be collected,

analyzed, stored and transmitted at real-time, so as to take timely corrective

actions to meet SLAs.

2. Effectiveness.It must provide an e ective view of the system state condi-ff
tions that can be used for management purposes and to identify the causes of

observed phenomena. It must also adapt its monitoring functions to varying

conditions in order to accommodate variable resources, system errors, and

changing requirements.

3. Resilience.It must withstand a number of component failures while contin-

uing to operate normally, thus ensuring service continuity. Single points of

failure must be avoided for providing persistence of service delivery.

4. Multi-tenancy.It must be able to monitor applications distributed over

di erent data centers in order to better perform troubleshooting activities inff
dynamic environments such as cloud scenarios.

We state that none of the existing solutions ful lls all these requirements. Infi
this paper we overcome state-of-the-art limits with a novel open-source monitor-

ing infrastructure. We propose a hybrid architecture for a quasi real-time mon-

itoring of large-scale, geographically distributed network infrastructures spread

across multiple data centers, designed to provide high scalability, e ectivenessff
and resilience. Here, the term hybridrefers to the use of two di erent commu-ff
nication schemes: a hierarchicalone and a P2P-basedone. Each data center is

equipped with its own decoupled monitoring infrastructure; each monitor adopts

a hierarchical scheme that ensure scalability with respect to the number of

monitored resources, in a subset of the whole architecture. Communications

between data centers are performed through the root managers, software mod-

ules responsible for orchestrating the whole process. The root managers of every

decentralized monitor are connected through a custom communication module

that implements the P2P Pastry DHT routing overlay [6]. In this way, a ser-

vice distributed across several data centers can be jointly monitored through the

appropriate root managers. The internal operations of the monitor are geared

towards e ectiveness objectives.ff We provide real-time access to single perfor-

mance samples or graphs, as well as more sophisticated analysis that aim at
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identifying system or application states for anomaly detection, capacity plan-

ning, or other management studies. Every single component in the infrastructure

is designed to be resilient to failures. Whenever possible, we enrich the existing

software modules with redundancy and failover mechanisms. Otherwise, we auto-

matically restart the modules in case of failure.

The rest of this paper is organized as follows. Section 2 evaluates the current

state-of-the-art in the area of large-scale system monitoring. Section 3 describes

the design decisions supporting the described requirements, provides a high level

architecture of the entire monitoring infrastructure, motivates the choice of the

software components and discusses various implementation details. Section 4

investigates the theoretical scalability limits of the proposed architecture g-fi
ured out from experimental scenarios. Finally, Sect. 5 concludes the paper with

some remarks and future work.

2 Related Work

Current state-of-the-art monitoring tools do not guarantee scalability, e ective-ff
ness, resilience and multi-tenancy objectives. Fully centralized monitors cannot

scale to the desired number of resource data streams. For example, the prototype

system introduced in [7], which uses Ganglia [8] and Syslog-NG to accumulate

data into a central MySQL database, shows severe scalability limits at only 64

monitored nodes, each one collecting 20 resource data streams every 30 s. Here,

the main bottleneck is related to the increasing computational overhead occur-

ring at high sampling frequencies. On the other hand, lowering the sampling

frequency (commonly, once every ve minutes) can make it di cult to spotfi ffi
rapidly changing workloads which in turn may entail the violation of SLAs [9].

Concerning resilience, the vast majority of both open-source and commercial

monitoring infrastructures like OpenNMS [10], Zabbix [11], Zenoss [12] and Cacti

[13] are not adequate or designed to address failures, especially if combined with

the ability to gather and support millions of resource data streams per second.

In terms of e ectiveness,ff most open-source monitoring tools only partially

address this aspect. For example, Graphite [14] and Cacti provide only trend-

ing analyses, Nagios [15] provides alerting, while Chukwa [16] and Flume [17] are

designed exclusively to collect resource data streams or logs. Also current decen-

tralized, per-data-center, hierarchical monitors such as Ganglia [18] are limited

to e ciently compute averages of measures spanning over severalffi nodes. How-

ever, the complexity of current workloads in modern data centers calls for more

sophisticated processing, such as the identi cation of correlations among di erentfi ff
resource data streams, or the detection of anomalies in the global system state.

Astrolabe [19] is a hybrid solution that combines a hierarchical scheme with

an unstructured P2P routing protocol for distributed communications as our pro-

posal does. While it is resilient and highly scalable in terms of data collection and

storage, it lacks in e ectiveness and its manageability is a complex task since itff
incurs a lot of network tra c. Unstructured systems do not put any constraints onffi
placement of data items on peers and how peers maintain their network connec-

tions and this solution su ers from non-deterministic results, high network com-ff
munication overload and non-scalability of bandwidth consumption [20].
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While collection and network monitoring were addressed in many works with

signi cant results [fi 21–23], the state-of-the-art technology in multi-tenant mon-

itoring is a very niche eld.fi In fact, none of the previous works deals with a

multi-tenant environment. At the best of our knowledge, the only open contri-

bution in this sense is given by [24]: it extends monitoring based on data stream

management systems (DSMS) with the ability to handle multiple tenants and

arbitrary data; however it does not address resilience in terms of single points

of failure, it has no implemented prototype, and it does not present any type of

analysis to support the proposed architectural choices.

The fuzzy DHT algorithm proposed in this paper addresses the issue of join-

ing the need for advanced lookup features with the need to preserve the scala-

bility of DHTs. Other studies propose exible queries.fl For example, Liu et al.

propose a system to support range queries [25], other researchers propose key-

word queries based on inversed indexes [26, 27], while Tang et al. introduce

semantic searches on the CAN DHT [28]. However, all these proposals require

separate search services or introduce a completely new routing mechanism. Our

approach is di erent from these proposals for three main reasons. First, the fuzzyff
DHT algorithm allows the deployment of novel services with only slight modi ca-fi
tions to the existing overlay networks, thus allowing a simpler deployment of the

fuzzy DHT based overlay. Second, the proposed algorithm is explicitly designed

to provide multiple keyword-based searches, which are convenient for locating

resources based on attributes. Finally, our algorithm is explicitly designed with

e ciency as a primary goal.ffi

3 Architecture

The early decisions that inspired the design of the proposed architecture share

four important goals: (1) to dominate the complexity of the monitoring prob-

lem (Scalability), (2) to tune the monitoring activities according to di erentff
objectives (Effectiveness), (3) to avoid single points of failure (Resilience), and

(4) to monitor services spanning across di erent clusters or data centers (ff Multi-
tenancy). This section details the architecture design of our proposal, with

particular emphasis to the design decisions that allow the achievement of the

mentioned goals. Figures 1 and 2 present the high level architecture of the moni-

toring infrastructure. The interested reader can read a more detailed description

in [29, 30].

We propose a hybrid architecture using a hierarchical communication scheme

to ensure scalability and a P2P-based communication scheme to allow multi-

tenancy. In our opinion, a hybrid solution is the only viable alternative for scaling

to an arbitrary number of data centers and the huge problem size makes it

literally impossible to deploy any kind of centralized infrastructure. Even worse,

service centralization would not be fault-tolerant. For these reasons, each cluster

in our architecture is equipped with an independent monitoring infrastructure.

In order to scale to millions of data streams per sample interval, it is manda-

tory to shift preliminary computations (such as the sampling of a resource and
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the performing of sanity checks on sampled data) as close as possible to the

edge of the monitored infrastructure. Failure to do so would result in a system

that unnecessarily processes potentially useless data. For this reason, collected

resource data streams are initially ltered (or marked as invalid, anomalous) onfi
the monitored nodes where a collection agentreceives the samples from several

probe processes. Probe processes are responsible for collecting periodically per-

formance and/or utilization samples regarding a set of hardware and software

resources. The collection agent performs preliminary validity checks on them,

that are executed through dynamic, pluggable modules that receive in input

the data stream and respond with TRUE or FALSE. If at least one check fails,

the stream is tagged as invalid, but it is never discarded; this facilitates later

debugging operations. The following checks are implemented now: missing value,

value out of range, sequence of null values. Then, the collection agent updates

the resource data streams and sends them to a set of associated collector nodes.

We consider both the sending of uncoded (without compression) and coded (loss-

less compression) data. A detailed description of the collection agent has been

presented by the authors in [31].

The collector node is the main component of thedistributed cluster data filter.

It receives the checked and coded resource data streams, performs the necessary

decoding, applies low cost analyses on decoded data, and stores their results

for a real-time plot or further analysis. In the former case, processing stops and

the user is able to see immediately the behavior of the resource data streams. In

order to support real-time analytics at large scale, at this level we adopt analytic

approaches having linear computational complexity and adaptive implementa-

tion. Linear solutions permit to understand system behavior in real-time, so as

to diagnose eventual problems and take timely corrective actions to meet service

level objectives. Adaptivity allows analytic approaches to accommodate variable,

heterogeneous data collected across the multiple levels of abstraction present in

complex data center systems. Example analyses we implemented at this stage

include:

1. computing moving averages of resource data streams, in order to provide a

more stable representation of a node status;

2. aggregating (both temporally and spatially) node state representations to

obtain global views of the cluster state conditions;

3. extracting trends for short-term prediction of resource consumption and of

cluster state conditions;

4. detecting state changes and/or anomalies occurring in data streams for the

erase of alarms and the adoption of recovering strategies;

5. correlating node state representations in order to identify dependencies

among di erent nodes in the cluster and to exclude secondary ows.ff fl

Nodes and cluster state representations are then sent to two di erent stor-ff
ages: one for real-time plotting of the decoded and analyzed resource data

streams, and one for non-real-time later processing at highest levels. The former

storage for real-time plotting is handled by a modi ed version of OpenTSDB [fi 32]

that is able to plot a real-time short-term prediction of the resources trend. This



A Scalable Monitor for Large Systems 7

analysis is performed using a linear regression and a Gaussian kernel. The lat-

ter storage for non-real-time processing, called data sink, receives data destined

to further processing performed by the distributed analyzer described shortly.

This solution reduces the number of les generated from one per node per unitfi
time to a handful per cluster [33]. To enhance the performance of the storage

engine, we chose to pack the resource data streams (few bytes per each) in larger

chunks (64 KB by default) and to write them asynchronously to a distributed

le system that can be scaled to the appropriate size by easily adding back-endfi
nodes. In order to provide a homogeneous software layer (eg., Hbase coupling)

and an open-source platform, and in order to support a map-reduce paradigm,

the best possible choice is the Hadoop Distributed File System (HDFS). It allows

extremely scalable computations, it is designed to run on commodity hardware,

it is highly fault-tolerant, it provides high throughput access to application data,

and it is suitable for applications that have large data sets.

In the latter case, data is made available to thedistributed analyzer system. Its

purpose is to compute more sophisticated analyses on the resource data streams,

such as aggregation of information coming from di erent clusters, identi cationff fi
of correlated components in the system, anomaly detection and capacity plan-

ning. The data streams resulting from these analyses are persistently stored in

the distributed data storage. Here, data is available as (key, value) pairs, where

“key  is a unique identi er of a measure and value  is usually a tuple of values” fi “ ”
describing it (e.g., timestamp, host name, service/process, name of the monitored

performance index, actual value). The distributed analyzer system is composed

by a set of analyzer nodes. Each analyzer node runs arbitrary batch jobs that

analyze the state representation data streams of nodes and clusters. At this

stage, we admit the implementation of more computational expensive analyses

with respect to those applied at the cluster level. Now, analyses are applied only

to small sets of representative information (i.e., nodes and cluster state represen-

tations) from which we require to obtain relevant information for management

with high levels of accuracy. For example, analyses implemented at data center

level are:

1. aggregation of cluster state representations to obtain global views of the data

center state conditions;

2. long-term prediction of clusters and data center state conditions computed

at di erent temporal scales and with di erent prediction horizons;ff ff
3. detection of changes and anomalous events in data center state conditions

with the identi cation of which node(s) in the di erent clusters is the culprit.fi ff

We choose the Pig framework for the implementation of the analysis scripts [34].

Pig o ers richer data structures over pure map-reduce, for example multivaluedff
and nested dictionaries. Each Pig script is compiled into a series of equivalent

map-reduce scripts that process the input data and write the results in a parallel

way. Our scripts implement the analyses mentioned above. Further analyses

can be easily supported by our architecture and implemented to satisfy more

sophisticated requests.
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Both the reduced streams representing the system state and the resource

data streams processed by OpenTSDB must be written into a data storage. For

the sake of performance, it is possible to avoid the reuse of the same structured

storage. As matter of facts, the data storage:

 – must scale with an increasing number of data streams;

 – must be fault tolerant;

 – should be designed towards the data management.

In this context, we choose Apache HBase [35] also because of the fact that

it includes the homogeneity and the reuse of components. In our architecture,

the HBase storage is responsible to preserve all the analyzed information about

nodes, clusters and data center. Apache HBase is a distributed column-oriented

database built on top of HDFS, designed from the ground-up to scale linearly

just by adding nodes. It is not relational and it does not support SQL, but thanks

to the proper space management properties, it is able to surpass a traditional

RDBMS-based system by hosting very large and sparsely populated tables on

clusters implemented on commodity hardware.

The information regarding the data center asset is stored in a distributed
configuration database. In this way, we strive to avoid possible inconsistencies

mainly due to a service being migrated or receiving more resources. The monitor-

ing infrastructure associates data streams to the identi ers of the correspondingfi
monitored resource. The con guration database is needed to store all informationfi
related to the asset of a cluster. Asset-related information includes a description

of the resource metadata (name, id), placement (IP of the hosting node or vir-

tual machine), sampling period, and a description of the time interval during

which the resource is supposed to be assigned to a service. We think that it is

a good idea to use o -the-shelf Con guration Management DataBase Systemsff fi
(CMDBs). A CMDB is a repository of information related to all the compo-

nents of an information system, and contains the details of the con gurationfi
items in the IT infrastructure. However, the majority of CMDBs is not natively

fault tolerant. We address this shortcoming by replicating both its Web front-

end and DB back-end. The con guration management database of our choice isfi
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OneCMDB. It is an open-source CMDB for data centers that can store con gura-fi
tions such as hardware, software, services, customers, incidents, problems, RFCs

and documents. OneCMDB conforms to IT Management best practice declared

by the Information Technology Infrastructure Library. It adopts a client-server

paradigm and it is used in large production environments with thousands of

con guration items. An enhanced graphical user interface enables more e ectivefi ff
system operations.

Each monitoring infrastructure is orchestrated by aroot management system,

a software component that organizes the work ow of monitoring operations andfl
provides a programmable monitoring interface to the user (Fig. 3). All the root

managers dislocated on di erent data centers are interconnected by an e cientff ffi
DHT overlay routing network. In this rst version of our prototype,fi the other

main task carried out by a root manager is to forward early noti cations of anom-fi
alies in the internal state of some resources to other interested, subscribed root

managers. In this way, it is possible to anticipate the performance degradation

of services depending on these failing resources.

The orchestration module is the heart of the monitoring system since it

orchestrates the operations of the other aforementioned components (collector,

data lter, analyzer). One of its main tasks is to trigger and to abort the execu-fi
tion of batch jobs in the distributed cluster data lter and in the analyzer nodes.fi
The communication module is a simple messaging system used to interact with

the other components of the monitoring architecture in order to communicate

relevant information (such as anomalies in some resource state) to other moni-

toring systems dislocated in di erent data centers. The root manager node alsoff
receives commands from the user interface; these commands are forwarded to

and processed by the orchestration module. The user interface is basically a

Web-based application running on any selected node. It manages the resources

owned by an application and provides a programmable dashboard with gures offi
merit, diagrams and con guration parameters (monitored nodes, resources, per-fi
formance indexes, sampling intervals). Each cluster and each monitored process

is represented using embedded OpenTSDB graphs, while the system view is rep-

resented using a similar but customized interface that supports also long-term

predictions, aggregation analysis, detection and capacity planning. The failover

module ensures fault tolerance by identifying which root managers are compro-

mised and by restoring a safe state. To this purpose, each root manager runs

part of the replica of the other root managers in the same data center. If a root

manager fails, the replica becomes the master until the former one is restored.

When a service is installed on the nodes, the collection and analysis processes

supply this information to the root management system, which stores it into the

distributed con guration database. At each application deployment, a list of thefi
involved nodes is de ned.fi A unique key is associated to this list; both the key

and the list are shared through the DHT with each root management system.

The root management system responsible for the largest number of involved

nodes selects its best root manager on the basis of multiple con gurable metrics.fi
Finally, the selected root manager becomes the service leader.
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Each data center is composed by a set of root manager nodes connected

through a Pastry-based Distributed Hash Table (DHT) calledfuzzy DHT, which

has been presented and simulated in [30]. We chose Pastry [6] because it is

a generic, scalable and e cient substrate for P2P applications that forms affi
decentralized, self-organizing and fault-tolerant overlay network. Pastry provides

e cient request routing,ffi deterministic object location, and load balancing in

an application-independent manner. Furthermore, it provides mechanisms that

support and facilitate application-speci c object replication, caching, and faultfi
recovery. For example, it is possible to e ciently lookup allffi CPU utilization

time series in a given cluster (or a replica if the origin source is unavailable).

The DHT communication module implements all the needed overlay routing

functions. The root management system is built upon a set of custom Python

and Java modules. The DHT is implemented through the freepastry libraries.

The publish-subscribe mechanism used to broadcast alerts to the interested root

managers is implemented through Scribe [36]. We previously discussed these

aspects from a security point-of-view in [37].

We used exclusively open-source tools that can be modi ed and adapted forfi
our goals. We used GNU/Linux Debian, Ubuntu and Fedora OSs in di erentff
experimental testbeds, enhanced with the software packages from the Cloudera

repository (CDH4). The languages used for the deployment of our modules are

Bash (v4.2.36), Python (v2.7), Java (v1.6), JavaScript and C (where e ciencyffi
is needed, such as in our modi ed monitor probes). The batch processing frame-fi
work is Hadoop, version 2.0. Our choice is motivated by the dramatic scalability

improvement with respect to traditional RDBMS-based data storage architec-

tures under random, write-intensive data access patterns [38]. To avoid single

points of failure and to ensure service continuity, we enforce redundancy of every

component of the monitoring architecture. Whenever possible, we deploy our

solution using software that can be easily replicated. In other cases, we wrap the

component through custom scripts that detect failures and restart it, in case.

We implemented the user interface using the Django MVC framework and the

JQuery library to enhance the presentation of data. The responsiveness of the

application is improved through the adoption of AJAX-based techniques and

the Web server Apache v.2.2.

4 Analysis

We perform experimental analyses for evaluating the ability of the proposed

monitoring architecture in satisfying all requirements of scalability, e ectiveness,ff
resiliency and multi-tenancy. Due to the limited space, in this section we only

report analysis results about the scalability of our solution. We evaluate the

scalability of the proposed architecture in terms of number of monitored resource

data streams. In particular, we aim to nd out:fi

 – how many resource data streams can be monitored per node (intra-node scal-

ability);

 – how many nodes can be monitored in a cluster (intra-cluster scalability).
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Highest level scalability (intra-data center scalability) is left for future exten-

sions and strongly depends on both resource behaviors and aggregation results

obtained through analytics computed in the distributed analyzer system. In this

paper, we used the Amazon EC2 IaaS platform. In the considered infrastructure,

the backing storage is shared across the instances (EBS), and the theoretical net-

work connectivity is up to 1Gbps. The virtual machines are running instances

of the TPC-W and RUBiS benchmark suites. MapReduce jobs queries are used

for data distribution and analysis. We perform Map-Reduce versions of several

performance analyses having di erent computational costs, including the movingff
average and the Principal Component Analysis (PCA) over more than 1 h of data

collected from 2048 monitored nodes. We emphasize that the results are strongly

in uenced by the resource consumption of the TSDB component, and the tuningfl
of this trade-o  is out of the scope of this paper. However, we measure that theff
PCA (i.e., the most computational expensive analysis) requires an average of

5 min when computed over 8 collector nodes using around the 85 % of CPU (the

12.5 % was used for collector process). This result shows that the behavior of a

single cluster during the collection of over more than 6M of resource data streams

per second can be analyzed (in batches) within quasi real-time constraints.

In each monitored node, one probe is dedicated to system-related perfor-

mance monitoring through the output of the vmstat and sar monitors. The

remaining probes are process-related through pidstat and nethogs2 monitors.

This system probe collects 25 di erent performance indexes, while each processff
probe collects 23 di erent resource data streams. The sampling interval is con-ff
gured at 1 s for each probe in order to emulate the most challenging scenario.fi

4.1 Intra-node Scalability

In the rst experimental testbed, we evaluate how many resource data streamsfi
can be handled for each monitored node. We use one collector node and one

analyzer node running a single script that computes the moving average for every

resource data stream. The detail of the resources of the monitored node is the

following: micro instance, 613 MB memory, up to 2 EC2 Compute Units (Dual-

Core AMD Opteron (tm) Processor 2218 HE, cpu 2.6 GHz, cache size 1,024 KB),

EBS storage, dedicated network bandwidth of theoretically 100 Mbps per node.

Table 1 reports the average resource consumption (percentage of CPU, mem-

ory (RAM) and network (NET) utilization) of the collection agent as a function

of the number of monitored resource data streams. We performed tests on both

uncoded (without compression) and coded ( lossless compression) data in order

to evaluate the impact of compression on the scalability of the di erent resources.ff
Then, we evaluate how the use of theAdaptive algorithmthat we proposed in [39]

improves the scalability of our architecture. The Adaptive algorithm is able to

adapt the frequency of sampling and data updating to minimize computational

and communication costs, while guaranteeing high accuracy of monitored infor-

mation. From these tests, we see that at intra-node level, sending data streams

has a negligible impact on the network bandwidth, despite the fact that it is

reduced of about 50 % by using lossless compression and more than 80 % by
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Table 1. Average resource utilization of the collection agent.

#probes #resource
data
streams

Without compression Lossless compression Adaptive algorithm

CPU
(%)

RAM
(%)

NET
(%)

CPU
(%)

RAM
(%)

NET
(%)

CPU
(%)

RAM
(%)

NET
(%)

1 25 0.0 0.4 0.005 0.3 0.4 0.002 0.1 0.5 0.001

2 48 0.1 0.5 0.009 0.5 0.5 0.004 0.1 0.5 0.002

4 94 0.1 0.6 0.019 1.1 0.6 0.009 0.2 0.7 0.004

8 186 0.1 1.0 0.041 1.8 0.9 0.019 0.3 1.0 0.008

16 370 0.3 1.4 0.085 2.9 1.4 0.041 0.4 1.4 0.016

32 738 0.5 2.5 0.173 4.1 2.6 0.083 0.6 2.7 0.032

64 1474 0.6 4.7 0.352 6.0 4.8 0.162 0.8 4.6 0.069

128 2946 0.9 9.4 0.681 9.8 9.3 0.337 1.2 9.5 0.127

256 5890 2.5 18.7 1.392 23.1 18.3 0.641 3.1 18.8 0.266

using the Adaptive algorithm. We see also that the most used resource without

data compression or with Adaptive algorithm is the memory, while with lossless

compression the most used resource is the CPU. At 128 probes, both the CPU

and memory utilizations are less than 10 %. This threshold is commonly used as

the largest fraction of resource utilization that administrators are comfortable

devoting to monitoring. We have adopted this threshold as our target maximum

resource utilization for the monitoring system. Hence, on each monitored node,

we can collect up to 128 probes for a total of 2,946 resource data streams per

second. We recall that a period of one second is much shorter than commonly

adopted sampling periods that typically do not go below one minute.

4.2 Intra-cluster Scalability

In the following set of experiments, we consider nodes within a cluster, monitored

with the same probe setup. We measure the resource consumption of the collec-

tor at cluster level with or without compression e orts and with the Adaptiveff
algorithm.

Table 2 reports the average resource consumption of the collector node as a

function of the number of monitored nodes. From this table, we see that without

compression the most used resource is the network that allows the monitoring

of at most 64 nodes (or 188,544 resource data streams) in a cluster. On the

contrary, compressing data strongly impacts the CPU utilization. Despite that,

the compression of data allows to monitor more than 128 nodes or 2, 946·128 =

377, 088 resource data streams per second. By using the Adaptive algorithm we

are able to monitor up to 512 nodes per collector, meaning 1.5M resource data

streams per second.
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Table 2. Average resource utilization of the collector in the distributed cluster data
filter.

#monitored
nodes

#resource
data
streams

Without
compression

Lossless
compression

Adaptive
algorithm

CPU
(%)

NET
(%)

CPU
(%)

NET
(%)

CPU
(%)

NET
(%)

1 2946 0.1 0.971 0.6 0.450 0.1 0.189

2 5892 0.1 1.943 0.9 0.899 0.1 0.355

4 11784 0.2 3.838 2.0 1.797 0.2 0.748

8 23568 0.4 7.763 3.6 3.594 0.4 1.463

16 47136 0.9 15.421 8.1 7.186 0.9 3.001

32 94272 1.9 31.05517.1 14.374 1.9 5.872

64 188544 3.2 61.98033.6 28.751 3.2 11.711

128 377088 - - 69.9 57.539 6.1 23.404

256 754176 - - - - 12.5 47.096

512 1508352 - - - - 23.7 93.691

Table 3. Average resource utilization of a collector process.

#monitored nodes#resource data streams Collector

#nodes CPU (%) NET (%)

256 754176 1 12.5 47.096

512 1508352 2 12.8 48.327

1024 3016704 4 12.2 46.851

2048 6033408 8 12.4 46.908

As further result, we add collector nodes and increment the number of mon-

itored hosts to evaluate the scalability of the distributed cluster data lter.fi
Table 3 reports the average resource utilization across the collector nodes. We

keep adding collectors up to 2,048 monitored nodes. We also add more HDFS

and HBASE nodes to support the write throughput when the number of nodes

becomes higher than 256. We keep 256 as limit in the number of nodes since

overcoming the 50 % of incoming network bandwidth of the collector node means

overcoming the 100 % of outcoming bandwidth. In this scenario, by using the

Adaptive algorithm we are able to monitor about 6M resource data streams by

using an average 12.5 % of CPU and 47.3 % of network bandwidth.

This analysis on scalability reveals that the proposed architecture is able to

collect and process:

 – more than 2900 resource data streams per second, from 128 probes, on a single

monitored node, with a resource utilization <10 %;
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Table 4. Average resource utilization of a TSDB process over the distributed cluster
data filter.

#graphs #resource data streamsCPU (%) NET In (%) NET Out (%)

10 4500 10,3 0,077 0,131

25 11250 25,1 0,163 0,265

50 22500 49,8 0,329 0,538

100 30000 66,4 0,432 0,714

100 45000 98,2 0,671 1,099

 – more than 754000 resource data streams per second, from 256 di erent mon-ff
itored nodes using a single collector node;

 – more than 6000000 resource data streams per second per cluster.

By using the TSDB component, every collector node provides the real-time plot-

ting. In Table 4, we report the resource consumption of this process. In this test-

bed we request an increasing number of graphs (from 10 to 100) and we set

a refresh rate of 15 s for each graph. As for the collector process, the memory

consumption of the TSDB component is negligible with respect to the CPU

consumption. The TSDB process uses about the 66 % of CPU while plotting

100 graphs (i.e. 30000 resource data streams) for each collector node every 15 s.

Moreover, Table 4 shows that both the incoming and outcoming network band-

width consumptions are negligible if compared to the network consumptions of

the collector process. By using the 12.5 % and the 66.4 % of CPU for the collector

and TSDB respectively, more than the 20 % of spare CPU can be used for other

purposes like the execution of the Distributed sample storage jobs.

4.3 DHT Scalability

In the last section we evaluate the e ciency offfi the DHT-based communica-

tion mechanism. Table 5 shows the average number of exchanged messages per

lookup process as a function of the number of root managers in the monitoring

infrastructure. We compare our implementation with two other popular P2P

communication schemes: a ood-based system (like the one provided by thefl
Gnutella le sharing network) and a probabilistic ood-based one.fi fl We observe

that every algorithm shows an increment in the tra c generated with each query.ffi
However, the overhead growth of the ood-based and probabilistic ood algo-fl fl
rithms is much more evident than the overhead growth of the fuzzy DHT algo-

rithm. The main reason of this overhead lies in the fact that, for every lookup

performed, the number of nodes to visit is much higher. The probabilistic ood-fl
based algorithm can randomly decide to not forward queries across nodes; this

explains the reduced overhead with respect to the pure ood-based solution.fl
On the other hand, the better scalability of fuzzy DHT is due to its ability to

route queries only to a reduced fraction of nodes that have an high probability

of hosting the requested resource.
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Table 5. Number of exchanged messages as a function of overlay network size.

Root
managers

Messages
fuzzy DHT

Messages
flood-based

Messages
probabilistic
flood-based

1 1 1 1

2 2 2 1

4 2 4 2

8 3 7 5

16 4 15 13

32 5 31 26

64 6 62 48

5 Conclusions

In this paper, we proposed a novel hybrid architecture for monitoring large-

scale,geo-graphically distributed network infrastructures spread across multiple

data centers. Architectural choices are made in order to satisfy scalability, e ec-ff
tiveness, resiliency and multi-tenancy requirements. These choices are mandatory

when you have to support gathering and analysis operations of huge numbers of

data streams coming from cloud system monitors. The proposed architecture is

already integrated with on-line analyzers working at di erent temporalff scales.

Our preliminary experiments show the potential scalability limits of the moni-

toring system: more than 6M of resource data streams per cluster, per second.

All these operations of data streams are carried out within real-time constraints

in the order of seconds thus demonstrating that huge margins of improvement

are feasible.
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